Spaces:
Running
on
Zero
Running
on
Zero
Serhiy Stetskovych
commited on
Commit
·
2ccf6b5
1
Parent(s):
78111f8
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- __init__.py +0 -0
- app.py +217 -0
- checkpoint_epoch=499.ckpt +3 -0
- g_00120000 +3 -0
- hifigan/LICENSE +21 -0
- hifigan/README.md +101 -0
- hifigan/__init__.py +0 -0
- hifigan/config.py +28 -0
- hifigan/denoiser.py +64 -0
- hifigan/env.py +17 -0
- hifigan/meldataset.py +217 -0
- hifigan/models.py +368 -0
- hifigan/xutils.py +60 -0
- pflow/__init__.py +0 -0
- pflow/data/__init__.py +0 -0
- pflow/data/components/__init__.py +0 -0
- pflow/data/text_mel_datamodule.py +256 -0
- pflow/models/__init__.py +0 -0
- pflow/models/baselightningmodule.py +247 -0
- pflow/models/components/__init__.py +0 -0
- pflow/models/components/aligner.py +235 -0
- pflow/models/components/attentions.py +491 -0
- pflow/models/components/commons.py +179 -0
- pflow/models/components/decoder.py +444 -0
- pflow/models/components/flow_matching.py +148 -0
- pflow/models/components/speech_prompt_encoder.py +636 -0
- pflow/models/components/speech_prompt_encoder_v0.py +618 -0
- pflow/models/components/test.py +6 -0
- pflow/models/components/text_encoder.py +425 -0
- pflow/models/components/transformer.py +316 -0
- pflow/models/components/vits_modules.py +194 -0
- pflow/models/components/vits_posterior.py +43 -0
- pflow/models/components/vits_wn_decoder.py +79 -0
- pflow/models/components/wn_pflow_decoder.py +117 -0
- pflow/models/pflow_tts.py +182 -0
- pflow/text/__init__.py +53 -0
- pflow/text/cleaners.py +19 -0
- pflow/text/numbers.py +71 -0
- pflow/text/symbols.py +17 -0
- pflow/text/textnormalizer.py +198 -0
- pflow/utils/__init__.py +5 -0
- pflow/utils/audio.py +82 -0
- pflow/utils/generate_data_statistics.py +115 -0
- pflow/utils/instantiators.py +56 -0
- pflow/utils/logging_utils.py +53 -0
- pflow/utils/model.py +90 -0
- pflow/utils/monotonic_align/__init__.py +19 -0
- pflow/utils/monotonic_align/core.pyx +42 -0
- pflow/utils/pylogger.py +21 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
g_00120000 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
g_05000000 filter=lfs diff=lfs merge=lfs -text
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from pathlib import Path
|
3 |
+
import torchaudio
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
from hifigan.config import v1
|
12 |
+
from hifigan.denoiser import Denoiser
|
13 |
+
from hifigan.env import AttrDict
|
14 |
+
from hifigan.models import Generator as HiFiGAN
|
15 |
+
|
16 |
+
|
17 |
+
#from BigVGAN.models import BigVGAN
|
18 |
+
#from BigVGAN.env import AttrDict as BigVGANAttrDict
|
19 |
+
|
20 |
+
|
21 |
+
from pflow.models.pflow_tts import pflowTTS
|
22 |
+
from pflow.text import text_to_sequence, sequence_to_text
|
23 |
+
from pflow.utils.utils import intersperse
|
24 |
+
from pflow.data.text_mel_datamodule import mel_spectrogram
|
25 |
+
from pflow.utils.model import normalize
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
BIGVGAN_CONFIG = {
|
30 |
+
"resblock": "1",
|
31 |
+
"num_gpus": 0,
|
32 |
+
"batch_size": 32,
|
33 |
+
"learning_rate": 0.0001,
|
34 |
+
"adam_b1": 0.8,
|
35 |
+
"adam_b2": 0.99,
|
36 |
+
"lr_decay": 0.999,
|
37 |
+
"seed": 1234,
|
38 |
+
|
39 |
+
"upsample_rates": [4,4,2,2,2,2],
|
40 |
+
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
41 |
+
"upsample_initial_channel": 1536,
|
42 |
+
"resblock_kernel_sizes": [3,7,11],
|
43 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
44 |
+
|
45 |
+
"activation": "snakebeta",
|
46 |
+
"snake_logscale": True,
|
47 |
+
|
48 |
+
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
49 |
+
"mpd_reshapes": [2, 3, 5, 7, 11],
|
50 |
+
"use_spectral_norm": False,
|
51 |
+
"discriminator_channel_mult": 1,
|
52 |
+
|
53 |
+
"segment_size": 8192,
|
54 |
+
"num_mels": 80,
|
55 |
+
"num_freq": 1025,
|
56 |
+
"n_fft": 1024,
|
57 |
+
"hop_size": 256,
|
58 |
+
"win_size": 1024,
|
59 |
+
|
60 |
+
"sampling_rate": 22050,
|
61 |
+
|
62 |
+
"fmin": 0,
|
63 |
+
"fmax": 8000,
|
64 |
+
"fmax_for_loss": None,
|
65 |
+
|
66 |
+
"num_workers": 4,
|
67 |
+
|
68 |
+
"dist_config": {
|
69 |
+
"dist_backend": "nccl",
|
70 |
+
"dist_url": "tcp://localhost:54321",
|
71 |
+
"world_size": 1
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
PFLOW_MODEL_PATH = 'checkpoint_epoch=499.ckpt'
|
76 |
+
VOCODER_MODEL_PATH = 'g_00120000'
|
77 |
+
VOCODER_BIGVGAN_MODEL_PATH = 'g_05000000'
|
78 |
+
|
79 |
+
wav, sr = torchaudio.load('prompt.wav')
|
80 |
+
|
81 |
+
prompt = mel_spectrogram(
|
82 |
+
wav,
|
83 |
+
1024,
|
84 |
+
80,
|
85 |
+
22050,
|
86 |
+
256,
|
87 |
+
1024,
|
88 |
+
0,
|
89 |
+
8000,
|
90 |
+
center=False,
|
91 |
+
)[:,:,:264]
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def process_text(text: str, device: torch.device):
|
96 |
+
x = torch.tensor(
|
97 |
+
intersperse(text_to_sequence(text, ["ukr_cleaners"]), 0),
|
98 |
+
dtype=torch.long,
|
99 |
+
device=device,
|
100 |
+
)[None]
|
101 |
+
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
|
102 |
+
x_phones = sequence_to_text(x.squeeze(0).tolist())
|
103 |
+
return {"x_orig": text, "x": x, "x_lengths": x_lengths, 'x_phones':x_phones}
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
def load_hifigan(checkpoint_path, device):
|
109 |
+
h = AttrDict(v1)
|
110 |
+
hifigan = HiFiGAN(h).to(device)
|
111 |
+
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
|
112 |
+
_ = hifigan.eval()
|
113 |
+
hifigan.remove_weight_norm()
|
114 |
+
return hifigan
|
115 |
+
|
116 |
+
|
117 |
+
def load_bigvgan(checkpoint_path, device):
|
118 |
+
print("Loading '{}'".format(checkpoint_path))
|
119 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location=device)
|
120 |
+
|
121 |
+
|
122 |
+
h = BigVGANAttrDict(BIGVGAN_CONFIG)
|
123 |
+
torch.manual_seed(h.seed)
|
124 |
+
|
125 |
+
generator = BigVGAN(h).to(device)
|
126 |
+
generator.load_state_dict(checkpoint_dict['generator'])
|
127 |
+
generator.eval()
|
128 |
+
generator.remove_weight_norm()
|
129 |
+
return generator
|
130 |
+
|
131 |
+
|
132 |
+
def to_waveform(mel, vocoder, denoiser=None):
|
133 |
+
audio = vocoder(mel).clamp(-1, 1)
|
134 |
+
if denoiser is not None:
|
135 |
+
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
|
136 |
+
|
137 |
+
return audio.cpu().squeeze()
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
def get_device():
|
145 |
+
if torch.cuda.is_available():
|
146 |
+
print("[+] GPU Available! Using GPU")
|
147 |
+
device = torch.device("cuda")
|
148 |
+
else:
|
149 |
+
print("[-] GPU not available or forced CPU run! Using CPU")
|
150 |
+
device = torch.device("cpu")
|
151 |
+
return device
|
152 |
+
|
153 |
+
|
154 |
+
device = get_device()
|
155 |
+
model = pflowTTS.load_from_checkpoint(PFLOW_MODEL_PATH, map_location=device)
|
156 |
+
_ = model.eval()
|
157 |
+
#vocoder = load_bigvgan(VOCODER_BIGVGAN_MODEL_PATH, device)
|
158 |
+
vocoder = load_hifigan(VOCODER_MODEL_PATH, device)
|
159 |
+
denoiser = Denoiser(vocoder, mode="zeros")
|
160 |
+
|
161 |
+
@torch.inference_mode()
|
162 |
+
def synthesise(text, temperature, speed):
|
163 |
+
if len(text) > 1000:
|
164 |
+
raise gr.Error("Текст повинен бути коротшим за 1000 символів.")
|
165 |
+
|
166 |
+
text_processed = process_text(text.strip(), device)
|
167 |
+
|
168 |
+
output = model.synthesise(
|
169 |
+
text_processed["x"],
|
170 |
+
text_processed["x_lengths"],
|
171 |
+
n_timesteps=40,
|
172 |
+
temperature=temperature,
|
173 |
+
length_scale=1/speed,
|
174 |
+
prompt= normalize(prompt, model.mel_mean, model.mel_std)
|
175 |
+
)
|
176 |
+
waveform = to_waveform(output["mel"], vocoder, denoiser)
|
177 |
+
|
178 |
+
return text_processed['x_phones'][1::2], (22050, waveform.numpy())
|
179 |
+
|
180 |
+
|
181 |
+
description = f'''
|
182 |
+
# Експериментальна апка для генерації аудіо з тексту.
|
183 |
+
|
184 |
+
pflow checkpoint {PFLOW_MODEL_PATH}
|
185 |
+
vocoder: HIFIGAN(трейнутий на датасеті, з нуля) - {VOCODER_MODEL_PATH}
|
186 |
+
'''
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
i = gr.Interface(
|
191 |
+
fn=synthesise,
|
192 |
+
description=description,
|
193 |
+
inputs=[
|
194 |
+
gr.Text(label='Текст для синтезу:', lines=5, max_lines=10),
|
195 |
+
gr.Slider(minimum=0.0, maximum=1.0, label="Температура", value=0.2),
|
196 |
+
gr.Slider(minimum=0.6, maximum=2.0, label="Швидкість", value=1.0)
|
197 |
+
],
|
198 |
+
outputs=[
|
199 |
+
gr.Text(label='Фонемізований текст:', lines=5),
|
200 |
+
gr.Audio(
|
201 |
+
label="Згенероване аудіо:",
|
202 |
+
autoplay=False,
|
203 |
+
streaming=False,
|
204 |
+
type="numpy",
|
205 |
+
)
|
206 |
+
|
207 |
+
],
|
208 |
+
allow_flagging ='manual',
|
209 |
+
flagging_options=[("Якщо дуже погоне аудіо, тисни цю кнопку.", "negative")],
|
210 |
+
cache_examples=True,
|
211 |
+
title='',
|
212 |
+
# description=description,
|
213 |
+
# article=article,
|
214 |
+
# examples=examples,
|
215 |
+
)
|
216 |
+
i.queue(max_size=20, default_concurrency_limit=4)
|
217 |
+
i.launch(share=False, server_name="0.0.0.0")
|
checkpoint_epoch=499.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39051170c6c0d9abce47d0073f796912d5ce3854ade8f707cb30333f50160d99
|
3 |
+
size 279562867
|
g_00120000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f25c6dbc515ed387edd5d2e5683a50510aa33986e8a79273efe1216084f0f078
|
3 |
+
size 55824433
|
hifigan/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Jungil Kong
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
hifigan/README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
|
2 |
+
|
3 |
+
### Jungil Kong, Jaehyeon Kim, Jaekyoung Bae
|
4 |
+
|
5 |
+
In our [paper](https://arxiv.org/abs/2010.05646),
|
6 |
+
we proposed HiFi-GAN: a GAN-based model capable of generating high fidelity speech efficiently.<br/>
|
7 |
+
We provide our implementation and pretrained models as open source in this repository.
|
8 |
+
|
9 |
+
**Abstract :**
|
10 |
+
Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms.
|
11 |
+
Although such methods improve the sampling efficiency and memory usage,
|
12 |
+
their sample quality has not yet reached that of autoregressive and flow-based generative models.
|
13 |
+
In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis.
|
14 |
+
As speech audio consists of sinusoidal signals with various periods,
|
15 |
+
we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality.
|
16 |
+
A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method
|
17 |
+
demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than
|
18 |
+
real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-spectrogram inversion of unseen
|
19 |
+
speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times
|
20 |
+
faster than real-time on CPU with comparable quality to an autoregressive counterpart.
|
21 |
+
|
22 |
+
Visit our [demo website](https://jik876.github.io/hifi-gan-demo/) for audio samples.
|
23 |
+
|
24 |
+
## Pre-requisites
|
25 |
+
|
26 |
+
1. Python >= 3.6
|
27 |
+
2. Clone this repository.
|
28 |
+
3. Install python requirements. Please refer [requirements.txt](requirements.txt)
|
29 |
+
4. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/).
|
30 |
+
And move all wav files to `LJSpeech-1.1/wavs`
|
31 |
+
|
32 |
+
## Training
|
33 |
+
|
34 |
+
```
|
35 |
+
python train.py --config config_v1.json
|
36 |
+
```
|
37 |
+
|
38 |
+
To train V2 or V3 Generator, replace `config_v1.json` with `config_v2.json` or `config_v3.json`.<br>
|
39 |
+
Checkpoints and copy of the configuration file are saved in `cp_hifigan` directory by default.<br>
|
40 |
+
You can change the path by adding `--checkpoint_path` option.
|
41 |
+
|
42 |
+
Validation loss during training with V1 generator.<br>
|
43 |
+
![validation loss](./validation_loss.png)
|
44 |
+
|
45 |
+
## Pretrained Model
|
46 |
+
|
47 |
+
You can also use pretrained models we provide.<br/>
|
48 |
+
[Download pretrained models](https://drive.google.com/drive/folders/1-eEYTB5Av9jNql0WGBlRoi-WH2J7bp5Y?usp=sharing)<br/>
|
49 |
+
Details of each folder are as in follows:
|
50 |
+
|
51 |
+
| Folder Name | Generator | Dataset | Fine-Tuned |
|
52 |
+
| ------------ | --------- | --------- | ------------------------------------------------------ |
|
53 |
+
| LJ_V1 | V1 | LJSpeech | No |
|
54 |
+
| LJ_V2 | V2 | LJSpeech | No |
|
55 |
+
| LJ_V3 | V3 | LJSpeech | No |
|
56 |
+
| LJ_FT_T2_V1 | V1 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
|
57 |
+
| LJ_FT_T2_V2 | V2 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
|
58 |
+
| LJ_FT_T2_V3 | V3 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
|
59 |
+
| VCTK_V1 | V1 | VCTK | No |
|
60 |
+
| VCTK_V2 | V2 | VCTK | No |
|
61 |
+
| VCTK_V3 | V3 | VCTK | No |
|
62 |
+
| UNIVERSAL_V1 | V1 | Universal | No |
|
63 |
+
|
64 |
+
We provide the universal model with discriminator weights that can be used as a base for transfer learning to other datasets.
|
65 |
+
|
66 |
+
## Fine-Tuning
|
67 |
+
|
68 |
+
1. Generate mel-spectrograms in numpy format using [Tacotron2](https://github.com/NVIDIA/tacotron2) with teacher-forcing.<br/>
|
69 |
+
The file name of the generated mel-spectrogram should match the audio file and the extension should be `.npy`.<br/>
|
70 |
+
Example:
|
71 |
+
` Audio File : LJ001-0001.wav
|
72 |
+
Mel-Spectrogram File : LJ001-0001.npy`
|
73 |
+
2. Create `ft_dataset` folder and copy the generated mel-spectrogram files into it.<br/>
|
74 |
+
3. Run the following command.
|
75 |
+
```
|
76 |
+
python train.py --fine_tuning True --config config_v1.json
|
77 |
+
```
|
78 |
+
For other command line options, please refer to the training section.
|
79 |
+
|
80 |
+
## Inference from wav file
|
81 |
+
|
82 |
+
1. Make `test_files` directory and copy wav files into the directory.
|
83 |
+
2. Run the following command.
|
84 |
+
` python inference.py --checkpoint_file [generator checkpoint file path]`
|
85 |
+
Generated wav files are saved in `generated_files` by default.<br>
|
86 |
+
You can change the path by adding `--output_dir` option.
|
87 |
+
|
88 |
+
## Inference for end-to-end speech synthesis
|
89 |
+
|
90 |
+
1. Make `test_mel_files` directory and copy generated mel-spectrogram files into the directory.<br>
|
91 |
+
You can generate mel-spectrograms using [Tacotron2](https://github.com/NVIDIA/tacotron2),
|
92 |
+
[Glow-TTS](https://github.com/jaywalnut310/glow-tts) and so forth.
|
93 |
+
2. Run the following command.
|
94 |
+
` python inference_e2e.py --checkpoint_file [generator checkpoint file path]`
|
95 |
+
Generated wav files are saved in `generated_files_from_mel` by default.<br>
|
96 |
+
You can change the path by adding `--output_dir` option.
|
97 |
+
|
98 |
+
## Acknowledgements
|
99 |
+
|
100 |
+
We referred to [WaveGlow](https://github.com/NVIDIA/waveglow), [MelGAN](https://github.com/descriptinc/melgan-neurips)
|
101 |
+
and [Tacotron2](https://github.com/NVIDIA/tacotron2) to implement this.
|
hifigan/__init__.py
ADDED
File without changes
|
hifigan/config.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
v1 = {
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 16,
|
5 |
+
"learning_rate": 0.0004,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
"upsample_rates": [8, 8, 2, 2],
|
11 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
12 |
+
"upsample_initial_channel": 512,
|
13 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
14 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
15 |
+
"resblock_initial_channel": 256,
|
16 |
+
"segment_size": 8192,
|
17 |
+
"num_mels": 80,
|
18 |
+
"num_freq": 1025,
|
19 |
+
"n_fft": 1024,
|
20 |
+
"hop_size": 256,
|
21 |
+
"win_size": 1024,
|
22 |
+
"sampling_rate": 22050,
|
23 |
+
"fmin": 0,
|
24 |
+
"fmax": 8000,
|
25 |
+
"fmax_loss": None,
|
26 |
+
"num_workers": 4,
|
27 |
+
"dist_config": {"dist_backend": "nccl", "dist_url": "tcp://localhost:54321", "world_size": 1},
|
28 |
+
}
|
hifigan/denoiser.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code modified from Rafael Valle's implementation https://github.com/NVIDIA/waveglow/blob/5bc2a53e20b3b533362f974cfa1ea0267ae1c2b1/denoiser.py
|
2 |
+
|
3 |
+
"""Waveglow style denoiser can be used to remove the artifacts from the HiFiGAN generated audio."""
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class Denoiser(torch.nn.Module):
|
8 |
+
"""Removes model bias from audio produced with waveglow"""
|
9 |
+
|
10 |
+
def __init__(self, vocoder, filter_length=1024, n_overlap=4, win_length=1024, mode="zeros"):
|
11 |
+
super().__init__()
|
12 |
+
self.filter_length = filter_length
|
13 |
+
self.hop_length = int(filter_length / n_overlap)
|
14 |
+
self.win_length = win_length
|
15 |
+
|
16 |
+
dtype, device = next(vocoder.parameters()).dtype, next(vocoder.parameters()).device
|
17 |
+
self.device = device
|
18 |
+
if mode == "zeros":
|
19 |
+
mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device)
|
20 |
+
elif mode == "normal":
|
21 |
+
mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device)
|
22 |
+
else:
|
23 |
+
raise Exception(f"Mode {mode} if not supported")
|
24 |
+
|
25 |
+
def stft_fn(audio, n_fft, hop_length, win_length, window):
|
26 |
+
spec = torch.stft(
|
27 |
+
audio,
|
28 |
+
n_fft=n_fft,
|
29 |
+
hop_length=hop_length,
|
30 |
+
win_length=win_length,
|
31 |
+
window=window,
|
32 |
+
return_complex=True,
|
33 |
+
)
|
34 |
+
spec = torch.view_as_real(spec)
|
35 |
+
return torch.sqrt(spec.pow(2).sum(-1)), torch.atan2(spec[..., -1], spec[..., 0])
|
36 |
+
|
37 |
+
self.stft = lambda x: stft_fn(
|
38 |
+
audio=x,
|
39 |
+
n_fft=self.filter_length,
|
40 |
+
hop_length=self.hop_length,
|
41 |
+
win_length=self.win_length,
|
42 |
+
window=torch.hann_window(self.win_length, device=device),
|
43 |
+
)
|
44 |
+
self.istft = lambda x, y: torch.istft(
|
45 |
+
torch.complex(x * torch.cos(y), x * torch.sin(y)),
|
46 |
+
n_fft=self.filter_length,
|
47 |
+
hop_length=self.hop_length,
|
48 |
+
win_length=self.win_length,
|
49 |
+
window=torch.hann_window(self.win_length, device=device),
|
50 |
+
)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
bias_audio = vocoder(mel_input).float().squeeze(0)
|
54 |
+
bias_spec, _ = self.stft(bias_audio)
|
55 |
+
|
56 |
+
self.register_buffer("bias_spec", bias_spec[:, :, 0][:, :, None])
|
57 |
+
|
58 |
+
@torch.inference_mode()
|
59 |
+
def forward(self, audio, strength=0.0005):
|
60 |
+
audio_spec, audio_angles = self.stft(audio)
|
61 |
+
audio_spec_denoised = audio_spec - self.bias_spec.to(audio.device) * strength
|
62 |
+
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
|
63 |
+
audio_denoised = self.istft(audio_spec_denoised, audio_angles)
|
64 |
+
return audio_denoised
|
hifigan/env.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
|
7 |
+
class AttrDict(dict):
|
8 |
+
def __init__(self, *args, **kwargs):
|
9 |
+
super().__init__(*args, **kwargs)
|
10 |
+
self.__dict__ = self
|
11 |
+
|
12 |
+
|
13 |
+
def build_env(config, config_name, path):
|
14 |
+
t_path = os.path.join(path, config_name)
|
15 |
+
if config != t_path:
|
16 |
+
os.makedirs(path, exist_ok=True)
|
17 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
hifigan/meldataset.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.utils.data
|
10 |
+
from librosa.filters import mel as librosa_mel_fn
|
11 |
+
from librosa.util import normalize
|
12 |
+
from scipy.io.wavfile import read
|
13 |
+
|
14 |
+
MAX_WAV_VALUE = 32768.0
|
15 |
+
|
16 |
+
|
17 |
+
def load_wav(full_path):
|
18 |
+
sampling_rate, data = read(full_path)
|
19 |
+
return data, sampling_rate
|
20 |
+
|
21 |
+
|
22 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
23 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
24 |
+
|
25 |
+
|
26 |
+
def dynamic_range_decompression(x, C=1):
|
27 |
+
return np.exp(x) / C
|
28 |
+
|
29 |
+
|
30 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
31 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
32 |
+
|
33 |
+
|
34 |
+
def dynamic_range_decompression_torch(x, C=1):
|
35 |
+
return torch.exp(x) / C
|
36 |
+
|
37 |
+
|
38 |
+
def spectral_normalize_torch(magnitudes):
|
39 |
+
output = dynamic_range_compression_torch(magnitudes)
|
40 |
+
return output
|
41 |
+
|
42 |
+
|
43 |
+
def spectral_de_normalize_torch(magnitudes):
|
44 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
45 |
+
return output
|
46 |
+
|
47 |
+
|
48 |
+
mel_basis = {}
|
49 |
+
hann_window = {}
|
50 |
+
|
51 |
+
|
52 |
+
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
53 |
+
if torch.min(y) < -1.0:
|
54 |
+
print("min value is ", torch.min(y))
|
55 |
+
if torch.max(y) > 1.0:
|
56 |
+
print("max value is ", torch.max(y))
|
57 |
+
|
58 |
+
global mel_basis, hann_window # pylint: disable=global-statement
|
59 |
+
if fmax not in mel_basis:
|
60 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
61 |
+
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
62 |
+
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
63 |
+
|
64 |
+
y = torch.nn.functional.pad(
|
65 |
+
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
66 |
+
)
|
67 |
+
y = y.squeeze(1)
|
68 |
+
|
69 |
+
spec = torch.view_as_real(
|
70 |
+
torch.stft(
|
71 |
+
y,
|
72 |
+
n_fft,
|
73 |
+
hop_length=hop_size,
|
74 |
+
win_length=win_size,
|
75 |
+
window=hann_window[str(y.device)],
|
76 |
+
center=center,
|
77 |
+
pad_mode="reflect",
|
78 |
+
normalized=False,
|
79 |
+
onesided=True,
|
80 |
+
return_complex=True,
|
81 |
+
)
|
82 |
+
)
|
83 |
+
|
84 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
85 |
+
|
86 |
+
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
|
87 |
+
spec = spectral_normalize_torch(spec)
|
88 |
+
|
89 |
+
return spec
|
90 |
+
|
91 |
+
|
92 |
+
def get_dataset_filelist(a):
|
93 |
+
with open(a.input_training_file, encoding="utf-8") as fi:
|
94 |
+
training_files = [
|
95 |
+
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") for x in fi.read().split("\n") if len(x) > 0
|
96 |
+
]
|
97 |
+
|
98 |
+
with open(a.input_validation_file, encoding="utf-8") as fi:
|
99 |
+
validation_files = [
|
100 |
+
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") for x in fi.read().split("\n") if len(x) > 0
|
101 |
+
]
|
102 |
+
return training_files, validation_files
|
103 |
+
|
104 |
+
|
105 |
+
class MelDataset(torch.utils.data.Dataset):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
training_files,
|
109 |
+
segment_size,
|
110 |
+
n_fft,
|
111 |
+
num_mels,
|
112 |
+
hop_size,
|
113 |
+
win_size,
|
114 |
+
sampling_rate,
|
115 |
+
fmin,
|
116 |
+
fmax,
|
117 |
+
split=True,
|
118 |
+
shuffle=True,
|
119 |
+
n_cache_reuse=1,
|
120 |
+
device=None,
|
121 |
+
fmax_loss=None,
|
122 |
+
fine_tuning=False,
|
123 |
+
base_mels_path=None,
|
124 |
+
):
|
125 |
+
self.audio_files = training_files
|
126 |
+
random.seed(1234)
|
127 |
+
if shuffle:
|
128 |
+
random.shuffle(self.audio_files)
|
129 |
+
self.segment_size = segment_size
|
130 |
+
self.sampling_rate = sampling_rate
|
131 |
+
self.split = split
|
132 |
+
self.n_fft = n_fft
|
133 |
+
self.num_mels = num_mels
|
134 |
+
self.hop_size = hop_size
|
135 |
+
self.win_size = win_size
|
136 |
+
self.fmin = fmin
|
137 |
+
self.fmax = fmax
|
138 |
+
self.fmax_loss = fmax_loss
|
139 |
+
self.cached_wav = None
|
140 |
+
self.n_cache_reuse = n_cache_reuse
|
141 |
+
self._cache_ref_count = 0
|
142 |
+
self.device = device
|
143 |
+
self.fine_tuning = fine_tuning
|
144 |
+
self.base_mels_path = base_mels_path
|
145 |
+
|
146 |
+
def __getitem__(self, index):
|
147 |
+
filename = self.audio_files[index]
|
148 |
+
if self._cache_ref_count == 0:
|
149 |
+
audio, sampling_rate = load_wav(filename)
|
150 |
+
audio = audio / MAX_WAV_VALUE
|
151 |
+
if not self.fine_tuning:
|
152 |
+
audio = normalize(audio) * 0.95
|
153 |
+
self.cached_wav = audio
|
154 |
+
if sampling_rate != self.sampling_rate:
|
155 |
+
raise ValueError(f"{sampling_rate} SR doesn't match target {self.sampling_rate} SR")
|
156 |
+
self._cache_ref_count = self.n_cache_reuse
|
157 |
+
else:
|
158 |
+
audio = self.cached_wav
|
159 |
+
self._cache_ref_count -= 1
|
160 |
+
|
161 |
+
audio = torch.FloatTensor(audio)
|
162 |
+
audio = audio.unsqueeze(0)
|
163 |
+
|
164 |
+
if not self.fine_tuning:
|
165 |
+
if self.split:
|
166 |
+
if audio.size(1) >= self.segment_size:
|
167 |
+
max_audio_start = audio.size(1) - self.segment_size
|
168 |
+
audio_start = random.randint(0, max_audio_start)
|
169 |
+
audio = audio[:, audio_start : audio_start + self.segment_size]
|
170 |
+
else:
|
171 |
+
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), "constant")
|
172 |
+
|
173 |
+
mel = mel_spectrogram(
|
174 |
+
audio,
|
175 |
+
self.n_fft,
|
176 |
+
self.num_mels,
|
177 |
+
self.sampling_rate,
|
178 |
+
self.hop_size,
|
179 |
+
self.win_size,
|
180 |
+
self.fmin,
|
181 |
+
self.fmax,
|
182 |
+
center=False,
|
183 |
+
)
|
184 |
+
else:
|
185 |
+
mel = np.load(os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + ".npy"))
|
186 |
+
mel = torch.from_numpy(mel)
|
187 |
+
|
188 |
+
if len(mel.shape) < 3:
|
189 |
+
mel = mel.unsqueeze(0)
|
190 |
+
|
191 |
+
if self.split:
|
192 |
+
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
193 |
+
|
194 |
+
if audio.size(1) >= self.segment_size:
|
195 |
+
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
196 |
+
mel = mel[:, :, mel_start : mel_start + frames_per_seg]
|
197 |
+
audio = audio[:, mel_start * self.hop_size : (mel_start + frames_per_seg) * self.hop_size]
|
198 |
+
else:
|
199 |
+
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), "constant")
|
200 |
+
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), "constant")
|
201 |
+
|
202 |
+
mel_loss = mel_spectrogram(
|
203 |
+
audio,
|
204 |
+
self.n_fft,
|
205 |
+
self.num_mels,
|
206 |
+
self.sampling_rate,
|
207 |
+
self.hop_size,
|
208 |
+
self.win_size,
|
209 |
+
self.fmin,
|
210 |
+
self.fmax_loss,
|
211 |
+
center=False,
|
212 |
+
)
|
213 |
+
|
214 |
+
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
215 |
+
|
216 |
+
def __len__(self):
|
217 |
+
return len(self.audio_files)
|
hifigan/models.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
7 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
8 |
+
|
9 |
+
from .xutils import get_padding, init_weights
|
10 |
+
|
11 |
+
LRELU_SLOPE = 0.1
|
12 |
+
|
13 |
+
|
14 |
+
class ResBlock1(torch.nn.Module):
|
15 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
16 |
+
super().__init__()
|
17 |
+
self.h = h
|
18 |
+
self.convs1 = nn.ModuleList(
|
19 |
+
[
|
20 |
+
weight_norm(
|
21 |
+
Conv1d(
|
22 |
+
channels,
|
23 |
+
channels,
|
24 |
+
kernel_size,
|
25 |
+
1,
|
26 |
+
dilation=dilation[0],
|
27 |
+
padding=get_padding(kernel_size, dilation[0]),
|
28 |
+
)
|
29 |
+
),
|
30 |
+
weight_norm(
|
31 |
+
Conv1d(
|
32 |
+
channels,
|
33 |
+
channels,
|
34 |
+
kernel_size,
|
35 |
+
1,
|
36 |
+
dilation=dilation[1],
|
37 |
+
padding=get_padding(kernel_size, dilation[1]),
|
38 |
+
)
|
39 |
+
),
|
40 |
+
weight_norm(
|
41 |
+
Conv1d(
|
42 |
+
channels,
|
43 |
+
channels,
|
44 |
+
kernel_size,
|
45 |
+
1,
|
46 |
+
dilation=dilation[2],
|
47 |
+
padding=get_padding(kernel_size, dilation[2]),
|
48 |
+
)
|
49 |
+
),
|
50 |
+
]
|
51 |
+
)
|
52 |
+
self.convs1.apply(init_weights)
|
53 |
+
|
54 |
+
self.convs2 = nn.ModuleList(
|
55 |
+
[
|
56 |
+
weight_norm(
|
57 |
+
Conv1d(
|
58 |
+
channels,
|
59 |
+
channels,
|
60 |
+
kernel_size,
|
61 |
+
1,
|
62 |
+
dilation=1,
|
63 |
+
padding=get_padding(kernel_size, 1),
|
64 |
+
)
|
65 |
+
),
|
66 |
+
weight_norm(
|
67 |
+
Conv1d(
|
68 |
+
channels,
|
69 |
+
channels,
|
70 |
+
kernel_size,
|
71 |
+
1,
|
72 |
+
dilation=1,
|
73 |
+
padding=get_padding(kernel_size, 1),
|
74 |
+
)
|
75 |
+
),
|
76 |
+
weight_norm(
|
77 |
+
Conv1d(
|
78 |
+
channels,
|
79 |
+
channels,
|
80 |
+
kernel_size,
|
81 |
+
1,
|
82 |
+
dilation=1,
|
83 |
+
padding=get_padding(kernel_size, 1),
|
84 |
+
)
|
85 |
+
),
|
86 |
+
]
|
87 |
+
)
|
88 |
+
self.convs2.apply(init_weights)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
92 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
93 |
+
xt = c1(xt)
|
94 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
95 |
+
xt = c2(xt)
|
96 |
+
x = xt + x
|
97 |
+
return x
|
98 |
+
|
99 |
+
def remove_weight_norm(self):
|
100 |
+
for l in self.convs1:
|
101 |
+
remove_weight_norm(l)
|
102 |
+
for l in self.convs2:
|
103 |
+
remove_weight_norm(l)
|
104 |
+
|
105 |
+
|
106 |
+
class ResBlock2(torch.nn.Module):
|
107 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
108 |
+
super().__init__()
|
109 |
+
self.h = h
|
110 |
+
self.convs = nn.ModuleList(
|
111 |
+
[
|
112 |
+
weight_norm(
|
113 |
+
Conv1d(
|
114 |
+
channels,
|
115 |
+
channels,
|
116 |
+
kernel_size,
|
117 |
+
1,
|
118 |
+
dilation=dilation[0],
|
119 |
+
padding=get_padding(kernel_size, dilation[0]),
|
120 |
+
)
|
121 |
+
),
|
122 |
+
weight_norm(
|
123 |
+
Conv1d(
|
124 |
+
channels,
|
125 |
+
channels,
|
126 |
+
kernel_size,
|
127 |
+
1,
|
128 |
+
dilation=dilation[1],
|
129 |
+
padding=get_padding(kernel_size, dilation[1]),
|
130 |
+
)
|
131 |
+
),
|
132 |
+
]
|
133 |
+
)
|
134 |
+
self.convs.apply(init_weights)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
for c in self.convs:
|
138 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
139 |
+
xt = c(xt)
|
140 |
+
x = xt + x
|
141 |
+
return x
|
142 |
+
|
143 |
+
def remove_weight_norm(self):
|
144 |
+
for l in self.convs:
|
145 |
+
remove_weight_norm(l)
|
146 |
+
|
147 |
+
|
148 |
+
class Generator(torch.nn.Module):
|
149 |
+
def __init__(self, h):
|
150 |
+
super().__init__()
|
151 |
+
self.h = h
|
152 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
153 |
+
self.num_upsamples = len(h.upsample_rates)
|
154 |
+
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
155 |
+
resblock = ResBlock1 if h.resblock == "1" else ResBlock2
|
156 |
+
|
157 |
+
self.ups = nn.ModuleList()
|
158 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
159 |
+
self.ups.append(
|
160 |
+
weight_norm(
|
161 |
+
ConvTranspose1d(
|
162 |
+
h.upsample_initial_channel // (2**i),
|
163 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
164 |
+
k,
|
165 |
+
u,
|
166 |
+
padding=(k - u) // 2,
|
167 |
+
)
|
168 |
+
)
|
169 |
+
)
|
170 |
+
|
171 |
+
self.resblocks = nn.ModuleList()
|
172 |
+
for i in range(len(self.ups)):
|
173 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
174 |
+
for _, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
175 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
176 |
+
|
177 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
178 |
+
self.ups.apply(init_weights)
|
179 |
+
self.conv_post.apply(init_weights)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
x = self.conv_pre(x)
|
183 |
+
for i in range(self.num_upsamples):
|
184 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
185 |
+
x = self.ups[i](x)
|
186 |
+
xs = None
|
187 |
+
for j in range(self.num_kernels):
|
188 |
+
if xs is None:
|
189 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
190 |
+
else:
|
191 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
192 |
+
x = xs / self.num_kernels
|
193 |
+
x = F.leaky_relu(x)
|
194 |
+
x = self.conv_post(x)
|
195 |
+
x = torch.tanh(x)
|
196 |
+
|
197 |
+
return x
|
198 |
+
|
199 |
+
def remove_weight_norm(self):
|
200 |
+
print("Removing weight norm...")
|
201 |
+
for l in self.ups:
|
202 |
+
remove_weight_norm(l)
|
203 |
+
for l in self.resblocks:
|
204 |
+
l.remove_weight_norm()
|
205 |
+
remove_weight_norm(self.conv_pre)
|
206 |
+
remove_weight_norm(self.conv_post)
|
207 |
+
|
208 |
+
|
209 |
+
class DiscriminatorP(torch.nn.Module):
|
210 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
211 |
+
super().__init__()
|
212 |
+
self.period = period
|
213 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
214 |
+
self.convs = nn.ModuleList(
|
215 |
+
[
|
216 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
217 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
218 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
219 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
220 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
221 |
+
]
|
222 |
+
)
|
223 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
224 |
+
|
225 |
+
def forward(self, x):
|
226 |
+
fmap = []
|
227 |
+
|
228 |
+
# 1d to 2d
|
229 |
+
b, c, t = x.shape
|
230 |
+
if t % self.period != 0: # pad first
|
231 |
+
n_pad = self.period - (t % self.period)
|
232 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
233 |
+
t = t + n_pad
|
234 |
+
x = x.view(b, c, t // self.period, self.period)
|
235 |
+
|
236 |
+
for l in self.convs:
|
237 |
+
x = l(x)
|
238 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
239 |
+
fmap.append(x)
|
240 |
+
x = self.conv_post(x)
|
241 |
+
fmap.append(x)
|
242 |
+
x = torch.flatten(x, 1, -1)
|
243 |
+
|
244 |
+
return x, fmap
|
245 |
+
|
246 |
+
|
247 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super().__init__()
|
250 |
+
self.discriminators = nn.ModuleList(
|
251 |
+
[
|
252 |
+
DiscriminatorP(2),
|
253 |
+
DiscriminatorP(3),
|
254 |
+
DiscriminatorP(5),
|
255 |
+
DiscriminatorP(7),
|
256 |
+
DiscriminatorP(11),
|
257 |
+
]
|
258 |
+
)
|
259 |
+
|
260 |
+
def forward(self, y, y_hat):
|
261 |
+
y_d_rs = []
|
262 |
+
y_d_gs = []
|
263 |
+
fmap_rs = []
|
264 |
+
fmap_gs = []
|
265 |
+
for _, d in enumerate(self.discriminators):
|
266 |
+
y_d_r, fmap_r = d(y)
|
267 |
+
y_d_g, fmap_g = d(y_hat)
|
268 |
+
y_d_rs.append(y_d_r)
|
269 |
+
fmap_rs.append(fmap_r)
|
270 |
+
y_d_gs.append(y_d_g)
|
271 |
+
fmap_gs.append(fmap_g)
|
272 |
+
|
273 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
274 |
+
|
275 |
+
|
276 |
+
class DiscriminatorS(torch.nn.Module):
|
277 |
+
def __init__(self, use_spectral_norm=False):
|
278 |
+
super().__init__()
|
279 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
280 |
+
self.convs = nn.ModuleList(
|
281 |
+
[
|
282 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
283 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
284 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
285 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
286 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
287 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
288 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
289 |
+
]
|
290 |
+
)
|
291 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
fmap = []
|
295 |
+
for l in self.convs:
|
296 |
+
x = l(x)
|
297 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
298 |
+
fmap.append(x)
|
299 |
+
x = self.conv_post(x)
|
300 |
+
fmap.append(x)
|
301 |
+
x = torch.flatten(x, 1, -1)
|
302 |
+
|
303 |
+
return x, fmap
|
304 |
+
|
305 |
+
|
306 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
307 |
+
def __init__(self):
|
308 |
+
super().__init__()
|
309 |
+
self.discriminators = nn.ModuleList(
|
310 |
+
[
|
311 |
+
DiscriminatorS(use_spectral_norm=True),
|
312 |
+
DiscriminatorS(),
|
313 |
+
DiscriminatorS(),
|
314 |
+
]
|
315 |
+
)
|
316 |
+
self.meanpools = nn.ModuleList([AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
|
317 |
+
|
318 |
+
def forward(self, y, y_hat):
|
319 |
+
y_d_rs = []
|
320 |
+
y_d_gs = []
|
321 |
+
fmap_rs = []
|
322 |
+
fmap_gs = []
|
323 |
+
for i, d in enumerate(self.discriminators):
|
324 |
+
if i != 0:
|
325 |
+
y = self.meanpools[i - 1](y)
|
326 |
+
y_hat = self.meanpools[i - 1](y_hat)
|
327 |
+
y_d_r, fmap_r = d(y)
|
328 |
+
y_d_g, fmap_g = d(y_hat)
|
329 |
+
y_d_rs.append(y_d_r)
|
330 |
+
fmap_rs.append(fmap_r)
|
331 |
+
y_d_gs.append(y_d_g)
|
332 |
+
fmap_gs.append(fmap_g)
|
333 |
+
|
334 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
335 |
+
|
336 |
+
|
337 |
+
def feature_loss(fmap_r, fmap_g):
|
338 |
+
loss = 0
|
339 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
340 |
+
for rl, gl in zip(dr, dg):
|
341 |
+
loss += torch.mean(torch.abs(rl - gl))
|
342 |
+
|
343 |
+
return loss * 2
|
344 |
+
|
345 |
+
|
346 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
347 |
+
loss = 0
|
348 |
+
r_losses = []
|
349 |
+
g_losses = []
|
350 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
351 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
352 |
+
g_loss = torch.mean(dg**2)
|
353 |
+
loss += r_loss + g_loss
|
354 |
+
r_losses.append(r_loss.item())
|
355 |
+
g_losses.append(g_loss.item())
|
356 |
+
|
357 |
+
return loss, r_losses, g_losses
|
358 |
+
|
359 |
+
|
360 |
+
def generator_loss(disc_outputs):
|
361 |
+
loss = 0
|
362 |
+
gen_losses = []
|
363 |
+
for dg in disc_outputs:
|
364 |
+
l = torch.mean((1 - dg) ** 2)
|
365 |
+
gen_losses.append(l)
|
366 |
+
loss += l
|
367 |
+
|
368 |
+
return loss, gen_losses
|
hifigan/xutils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import glob
|
4 |
+
import os
|
5 |
+
|
6 |
+
import matplotlib
|
7 |
+
import torch
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
+
matplotlib.use("Agg")
|
11 |
+
import matplotlib.pylab as plt
|
12 |
+
|
13 |
+
|
14 |
+
def plot_spectrogram(spectrogram):
|
15 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
16 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
17 |
+
plt.colorbar(im, ax=ax)
|
18 |
+
|
19 |
+
fig.canvas.draw()
|
20 |
+
plt.close()
|
21 |
+
|
22 |
+
return fig
|
23 |
+
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def apply_weight_norm(m):
|
32 |
+
classname = m.__class__.__name__
|
33 |
+
if classname.find("Conv") != -1:
|
34 |
+
weight_norm(m)
|
35 |
+
|
36 |
+
|
37 |
+
def get_padding(kernel_size, dilation=1):
|
38 |
+
return int((kernel_size * dilation - dilation) / 2)
|
39 |
+
|
40 |
+
|
41 |
+
def load_checkpoint(filepath, device):
|
42 |
+
assert os.path.isfile(filepath)
|
43 |
+
print(f"Loading '{filepath}'")
|
44 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
45 |
+
print("Complete.")
|
46 |
+
return checkpoint_dict
|
47 |
+
|
48 |
+
|
49 |
+
def save_checkpoint(filepath, obj):
|
50 |
+
print(f"Saving checkpoint to {filepath}")
|
51 |
+
torch.save(obj, filepath)
|
52 |
+
print("Complete.")
|
53 |
+
|
54 |
+
|
55 |
+
def scan_checkpoint(cp_dir, prefix):
|
56 |
+
pattern = os.path.join(cp_dir, prefix + "????????")
|
57 |
+
cp_list = glob.glob(pattern)
|
58 |
+
if len(cp_list) == 0:
|
59 |
+
return None
|
60 |
+
return sorted(cp_list)[-1]
|
pflow/__init__.py
ADDED
File without changes
|
pflow/data/__init__.py
ADDED
File without changes
|
pflow/data/components/__init__.py
ADDED
File without changes
|
pflow/data/text_mel_datamodule.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from typing import Any, Dict, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchaudio as ta
|
6 |
+
from lightning import LightningDataModule
|
7 |
+
from torch.utils.data.dataloader import DataLoader
|
8 |
+
|
9 |
+
from pflow.text import text_to_sequence
|
10 |
+
from pflow.utils.audio import mel_spectrogram
|
11 |
+
from pflow.utils.model import fix_len_compatibility, normalize
|
12 |
+
from pflow.utils.utils import intersperse
|
13 |
+
|
14 |
+
|
15 |
+
def parse_filelist(filelist_path, split_char="|"):
|
16 |
+
with open(filelist_path, encoding="utf-8") as f:
|
17 |
+
filepaths_and_text = [line.strip().split(split_char) for line in f]
|
18 |
+
return filepaths_and_text
|
19 |
+
|
20 |
+
|
21 |
+
class TextMelDataModule(LightningDataModule):
|
22 |
+
def __init__( # pylint: disable=unused-argument
|
23 |
+
self,
|
24 |
+
name,
|
25 |
+
train_filelist_path,
|
26 |
+
valid_filelist_path,
|
27 |
+
batch_size,
|
28 |
+
num_workers,
|
29 |
+
pin_memory,
|
30 |
+
cleaners,
|
31 |
+
add_blank,
|
32 |
+
n_spks,
|
33 |
+
n_fft,
|
34 |
+
n_feats,
|
35 |
+
sample_rate,
|
36 |
+
hop_length,
|
37 |
+
win_length,
|
38 |
+
f_min,
|
39 |
+
f_max,
|
40 |
+
data_statistics,
|
41 |
+
seed,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
|
45 |
+
# this line allows to access init params with 'self.hparams' attribute
|
46 |
+
# also ensures init params will be stored in ckpt
|
47 |
+
self.save_hyperparameters(logger=False)
|
48 |
+
|
49 |
+
def setup(self, stage: Optional[str] = None): # pylint: disable=unused-argument
|
50 |
+
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
|
51 |
+
|
52 |
+
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
|
53 |
+
careful not to execute things like random split twice!
|
54 |
+
"""
|
55 |
+
# load and split datasets only if not loaded already
|
56 |
+
|
57 |
+
self.trainset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
|
58 |
+
self.hparams.train_filelist_path,
|
59 |
+
self.hparams.n_spks,
|
60 |
+
self.hparams.cleaners,
|
61 |
+
self.hparams.add_blank,
|
62 |
+
self.hparams.n_fft,
|
63 |
+
self.hparams.n_feats,
|
64 |
+
self.hparams.sample_rate,
|
65 |
+
self.hparams.hop_length,
|
66 |
+
self.hparams.win_length,
|
67 |
+
self.hparams.f_min,
|
68 |
+
self.hparams.f_max,
|
69 |
+
self.hparams.data_statistics,
|
70 |
+
self.hparams.seed,
|
71 |
+
)
|
72 |
+
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
|
73 |
+
self.hparams.valid_filelist_path,
|
74 |
+
self.hparams.n_spks,
|
75 |
+
self.hparams.cleaners,
|
76 |
+
self.hparams.add_blank,
|
77 |
+
self.hparams.n_fft,
|
78 |
+
self.hparams.n_feats,
|
79 |
+
self.hparams.sample_rate,
|
80 |
+
self.hparams.hop_length,
|
81 |
+
self.hparams.win_length,
|
82 |
+
self.hparams.f_min,
|
83 |
+
self.hparams.f_max,
|
84 |
+
self.hparams.data_statistics,
|
85 |
+
self.hparams.seed,
|
86 |
+
)
|
87 |
+
|
88 |
+
def train_dataloader(self):
|
89 |
+
return DataLoader(
|
90 |
+
dataset=self.trainset,
|
91 |
+
batch_size=self.hparams.batch_size,
|
92 |
+
num_workers=self.hparams.num_workers,
|
93 |
+
pin_memory=self.hparams.pin_memory,
|
94 |
+
shuffle=True,
|
95 |
+
collate_fn=TextMelBatchCollate(self.hparams.n_spks),
|
96 |
+
)
|
97 |
+
|
98 |
+
def val_dataloader(self):
|
99 |
+
return DataLoader(
|
100 |
+
dataset=self.validset,
|
101 |
+
batch_size=self.hparams.batch_size,
|
102 |
+
num_workers=self.hparams.num_workers,
|
103 |
+
pin_memory=self.hparams.pin_memory,
|
104 |
+
shuffle=False,
|
105 |
+
collate_fn=TextMelBatchCollate(self.hparams.n_spks),
|
106 |
+
)
|
107 |
+
|
108 |
+
def teardown(self, stage: Optional[str] = None):
|
109 |
+
"""Clean up after fit or test."""
|
110 |
+
pass # pylint: disable=unnecessary-pass
|
111 |
+
|
112 |
+
def state_dict(self): # pylint: disable=no-self-use
|
113 |
+
"""Extra things to save to checkpoint."""
|
114 |
+
return {}
|
115 |
+
|
116 |
+
def load_state_dict(self, state_dict: Dict[str, Any]):
|
117 |
+
"""Things to do when loading checkpoint."""
|
118 |
+
pass # pylint: disable=unnecessary-pass
|
119 |
+
|
120 |
+
|
121 |
+
class TextMelDataset(torch.utils.data.Dataset):
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
filelist_path,
|
125 |
+
n_spks,
|
126 |
+
cleaners,
|
127 |
+
add_blank=True,
|
128 |
+
n_fft=1024,
|
129 |
+
n_mels=80,
|
130 |
+
sample_rate=22050,
|
131 |
+
hop_length=256,
|
132 |
+
win_length=1024,
|
133 |
+
f_min=0.0,
|
134 |
+
f_max=8000,
|
135 |
+
data_parameters=None,
|
136 |
+
seed=None,
|
137 |
+
):
|
138 |
+
self.filepaths_and_text = parse_filelist(filelist_path)
|
139 |
+
self.n_spks = n_spks
|
140 |
+
self.cleaners = cleaners
|
141 |
+
self.add_blank = add_blank
|
142 |
+
self.n_fft = n_fft
|
143 |
+
self.n_mels = n_mels
|
144 |
+
self.sample_rate = sample_rate
|
145 |
+
self.hop_length = hop_length
|
146 |
+
self.win_length = win_length
|
147 |
+
self.f_min = f_min
|
148 |
+
self.f_max = f_max
|
149 |
+
if data_parameters is not None:
|
150 |
+
self.data_parameters = data_parameters
|
151 |
+
else:
|
152 |
+
self.data_parameters = {"mel_mean": 0, "mel_std": 1}
|
153 |
+
random.seed(seed)
|
154 |
+
random.shuffle(self.filepaths_and_text)
|
155 |
+
|
156 |
+
def get_datapoint(self, filepath_and_text):
|
157 |
+
if self.n_spks > 1:
|
158 |
+
filepath, spk, text = (
|
159 |
+
filepath_and_text[0],
|
160 |
+
int(filepath_and_text[1]),
|
161 |
+
filepath_and_text[2],
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
filepath, text = filepath_and_text[0], filepath_and_text[1]
|
165 |
+
spk = None
|
166 |
+
|
167 |
+
text = self.get_text(text, add_blank=self.add_blank)
|
168 |
+
mel, audio = self.get_mel(filepath)
|
169 |
+
# TODO: make dictionary to get different spec for same speaker
|
170 |
+
# right now naively repeating target mel for testing purposes
|
171 |
+
return {"x": text, "y": mel, "spk": spk, "wav":audio}
|
172 |
+
|
173 |
+
def get_mel(self, filepath):
|
174 |
+
audio, sr = ta.load(filepath)
|
175 |
+
assert sr == self.sample_rate
|
176 |
+
mel = mel_spectrogram(
|
177 |
+
audio,
|
178 |
+
self.n_fft,
|
179 |
+
self.n_mels,
|
180 |
+
self.sample_rate,
|
181 |
+
self.hop_length,
|
182 |
+
self.win_length,
|
183 |
+
self.f_min,
|
184 |
+
self.f_max,
|
185 |
+
center=False,
|
186 |
+
).squeeze()
|
187 |
+
mel = normalize(mel, self.data_parameters["mel_mean"], self.data_parameters["mel_std"])
|
188 |
+
return mel, audio
|
189 |
+
|
190 |
+
def get_text(self, text, add_blank=True):
|
191 |
+
text_norm = text_to_sequence(text, self.cleaners)
|
192 |
+
if self.add_blank:
|
193 |
+
text_norm = intersperse(text_norm, 0)
|
194 |
+
text_norm = torch.IntTensor(text_norm)
|
195 |
+
return text_norm
|
196 |
+
|
197 |
+
def __getitem__(self, index):
|
198 |
+
datapoint = self.get_datapoint(self.filepaths_and_text[index])
|
199 |
+
if datapoint["wav"].shape[1] <= 66150:
|
200 |
+
'''
|
201 |
+
skip datapoint if too short (3s)
|
202 |
+
TODO To not waste data, we can concatenate wavs less than 3s and use them
|
203 |
+
TODO as a hyperparameter; multispeaker dataset can use another wav of same speaker
|
204 |
+
'''
|
205 |
+
return self.__getitem__(random.randint(0, len(self.filepaths_and_text)-1))
|
206 |
+
return datapoint
|
207 |
+
|
208 |
+
def __len__(self):
|
209 |
+
return len(self.filepaths_and_text)
|
210 |
+
|
211 |
+
|
212 |
+
class TextMelBatchCollate:
|
213 |
+
def __init__(self, n_spks):
|
214 |
+
self.n_spks = n_spks
|
215 |
+
|
216 |
+
def __call__(self, batch):
|
217 |
+
B = len(batch)
|
218 |
+
y_max_length = max([item["y"].shape[-1] for item in batch])
|
219 |
+
y_max_length = fix_len_compatibility(y_max_length)
|
220 |
+
wav_max_length = y_max_length * 256
|
221 |
+
x_max_length = max([item["x"].shape[-1] for item in batch])
|
222 |
+
n_feats = batch[0]["y"].shape[-2]
|
223 |
+
|
224 |
+
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
225 |
+
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
226 |
+
wav = torch.zeros((B, 1, wav_max_length), dtype=torch.float32)
|
227 |
+
y_lengths, x_lengths = [], []
|
228 |
+
wav_lengths = []
|
229 |
+
spks = []
|
230 |
+
for i, item in enumerate(batch):
|
231 |
+
y_, x_ = item["y"], item["x"]
|
232 |
+
wav_ = item["wav"][:,:wav_max_length] if item["wav"].shape[-1] > wav_max_length else item["wav"]
|
233 |
+
y_lengths.append(y_.shape[-1])
|
234 |
+
x_lengths.append(x_.shape[-1])
|
235 |
+
wav_lengths.append(wav_.shape[-1])
|
236 |
+
y[i, :, : y_.shape[-1]] = y_
|
237 |
+
x[i, : x_.shape[-1]] = x_
|
238 |
+
wav[i, :, : wav_.shape[-1]] = wav_
|
239 |
+
spks.append(item["spk"])
|
240 |
+
|
241 |
+
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
242 |
+
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
243 |
+
wav_lengths = torch.tensor(wav_lengths, dtype=torch.long)
|
244 |
+
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
|
245 |
+
|
246 |
+
return {
|
247 |
+
"x": x,
|
248 |
+
"x_lengths": x_lengths,
|
249 |
+
"y": y,
|
250 |
+
"y_lengths": y_lengths,
|
251 |
+
"spks": spks,
|
252 |
+
"wav":wav,
|
253 |
+
"wav_lengths":wav_lengths,
|
254 |
+
"prompt_spec": y,
|
255 |
+
"prompt_lengths": y_lengths,
|
256 |
+
}
|
pflow/models/__init__.py
ADDED
File without changes
|
pflow/models/baselightningmodule.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is a base lightning module that can be used to train a model.
|
3 |
+
The benefit of this abstraction is that all the logic outside of model definition can be reused for different models.
|
4 |
+
"""
|
5 |
+
import inspect
|
6 |
+
from abc import ABC
|
7 |
+
from typing import Any, Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from lightning import LightningModule
|
11 |
+
from lightning.pytorch.utilities import grad_norm
|
12 |
+
|
13 |
+
from pflow import utils
|
14 |
+
from pflow.utils.utils import plot_tensor
|
15 |
+
from pflow.models.components import commons
|
16 |
+
|
17 |
+
log = utils.get_pylogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
class BaseLightningClass(LightningModule, ABC):
|
21 |
+
def update_data_statistics(self, data_statistics):
|
22 |
+
if data_statistics is None:
|
23 |
+
data_statistics = {
|
24 |
+
"mel_mean": 0.0,
|
25 |
+
"mel_std": 1.0,
|
26 |
+
}
|
27 |
+
|
28 |
+
self.register_buffer("mel_mean", torch.tensor(data_statistics["mel_mean"]))
|
29 |
+
self.register_buffer("mel_std", torch.tensor(data_statistics["mel_std"]))
|
30 |
+
|
31 |
+
def configure_optimizers(self) -> Any:
|
32 |
+
optimizer = self.hparams.optimizer(params=self.parameters())
|
33 |
+
if self.hparams.scheduler not in (None, {}):
|
34 |
+
scheduler_args = {}
|
35 |
+
# Manage last epoch for exponential schedulers
|
36 |
+
if "last_epoch" in inspect.signature(self.hparams.scheduler.scheduler).parameters:
|
37 |
+
if hasattr(self, "ckpt_loaded_epoch"):
|
38 |
+
current_epoch = self.ckpt_loaded_epoch - 1
|
39 |
+
else:
|
40 |
+
current_epoch = -1
|
41 |
+
|
42 |
+
scheduler_args.update({"optimizer": optimizer})
|
43 |
+
scheduler = self.hparams.scheduler.scheduler(**scheduler_args)
|
44 |
+
print(self.ckpt_loaded_epoch - 1)
|
45 |
+
if hasattr(self, "ckpt_loaded_epoch"):
|
46 |
+
scheduler.last_epoch = self.ckpt_loaded_epoch - 1
|
47 |
+
else:
|
48 |
+
scheduler.last_epoch = -1
|
49 |
+
return {
|
50 |
+
"optimizer": optimizer,
|
51 |
+
"lr_scheduler": {
|
52 |
+
"scheduler": scheduler,
|
53 |
+
# "interval": self.hparams.scheduler.lightning_args.interval,
|
54 |
+
# "frequency": self.hparams.scheduler.lightning_args.frequency,
|
55 |
+
# "name": "learning_rate",
|
56 |
+
"monitor": "val_loss",
|
57 |
+
},
|
58 |
+
}
|
59 |
+
|
60 |
+
return {"optimizer": optimizer}
|
61 |
+
|
62 |
+
def get_losses(self, batch):
|
63 |
+
x, x_lengths = batch["x"], batch["x_lengths"]
|
64 |
+
y, y_lengths = batch["y"], batch["y_lengths"]
|
65 |
+
# prompt_spec = batch["prompt_spec"]
|
66 |
+
# prompt_lengths = batch["prompt_lengths"]
|
67 |
+
# prompt_slice, ids_slice = commons.rand_slice_segments(
|
68 |
+
# prompt_spec,
|
69 |
+
# prompt_lengths,
|
70 |
+
# self.prompt_size
|
71 |
+
# )
|
72 |
+
prompt_slice = None
|
73 |
+
dur_loss, prior_loss, diff_loss, attn = self(
|
74 |
+
x=x,
|
75 |
+
x_lengths=x_lengths,
|
76 |
+
y=y,
|
77 |
+
y_lengths=y_lengths,
|
78 |
+
prompt=prompt_slice,
|
79 |
+
)
|
80 |
+
return ({
|
81 |
+
"dur_loss": dur_loss,
|
82 |
+
"prior_loss": prior_loss,
|
83 |
+
"diff_loss": diff_loss,
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"attn": attn
|
87 |
+
}
|
88 |
+
)
|
89 |
+
|
90 |
+
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
91 |
+
self.ckpt_loaded_epoch = checkpoint["epoch"] # pylint: disable=attribute-defined-outside-init
|
92 |
+
|
93 |
+
def training_step(self, batch: Any, batch_idx: int):
|
94 |
+
loss_dict, attn_dict = self.get_losses(batch)
|
95 |
+
|
96 |
+
self.log(
|
97 |
+
"step",
|
98 |
+
float(self.global_step),
|
99 |
+
on_step=True,
|
100 |
+
on_epoch=True,
|
101 |
+
logger=True,
|
102 |
+
sync_dist=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
self.log(
|
106 |
+
"sub_loss/train_dur_loss",
|
107 |
+
loss_dict["dur_loss"],
|
108 |
+
on_step=True,
|
109 |
+
on_epoch=True,
|
110 |
+
logger=True,
|
111 |
+
sync_dist=True,
|
112 |
+
)
|
113 |
+
self.log(
|
114 |
+
"sub_loss/train_prior_loss",
|
115 |
+
loss_dict["prior_loss"],
|
116 |
+
on_step=True,
|
117 |
+
on_epoch=True,
|
118 |
+
logger=True,
|
119 |
+
sync_dist=True,
|
120 |
+
)
|
121 |
+
self.log(
|
122 |
+
"sub_loss/train_diff_loss",
|
123 |
+
loss_dict["diff_loss"],
|
124 |
+
on_step=True,
|
125 |
+
on_epoch=True,
|
126 |
+
logger=True,
|
127 |
+
sync_dist=True,
|
128 |
+
)
|
129 |
+
|
130 |
+
total_loss = sum(loss_dict.values())
|
131 |
+
self.log(
|
132 |
+
"loss/train",
|
133 |
+
total_loss,
|
134 |
+
on_step=True,
|
135 |
+
on_epoch=True,
|
136 |
+
logger=True,
|
137 |
+
prog_bar=True,
|
138 |
+
sync_dist=True,
|
139 |
+
)
|
140 |
+
attn = attn_dict["attn"][0]
|
141 |
+
self.logger.experiment.add_image(
|
142 |
+
f"train/alignment",
|
143 |
+
plot_tensor(attn.cpu()),
|
144 |
+
self.current_epoch,
|
145 |
+
dataformats="HWC",
|
146 |
+
)
|
147 |
+
return {"loss": total_loss, "log": loss_dict}
|
148 |
+
|
149 |
+
def validation_step(self, batch: Any, batch_idx: int):
|
150 |
+
loss_dict, attn_dict = self.get_losses(batch)
|
151 |
+
self.log(
|
152 |
+
"sub_loss/val_dur_loss",
|
153 |
+
loss_dict["dur_loss"],
|
154 |
+
on_step=True,
|
155 |
+
on_epoch=True,
|
156 |
+
logger=True,
|
157 |
+
sync_dist=True,
|
158 |
+
)
|
159 |
+
self.log(
|
160 |
+
"sub_loss/val_prior_loss",
|
161 |
+
loss_dict["prior_loss"],
|
162 |
+
on_step=True,
|
163 |
+
on_epoch=True,
|
164 |
+
logger=True,
|
165 |
+
sync_dist=True,
|
166 |
+
)
|
167 |
+
self.log(
|
168 |
+
"sub_loss/val_diff_loss",
|
169 |
+
loss_dict["diff_loss"],
|
170 |
+
on_step=True,
|
171 |
+
on_epoch=True,
|
172 |
+
logger=True,
|
173 |
+
sync_dist=True,
|
174 |
+
)
|
175 |
+
|
176 |
+
total_loss = sum(loss_dict.values())
|
177 |
+
self.log(
|
178 |
+
"loss/val",
|
179 |
+
total_loss,
|
180 |
+
on_step=True,
|
181 |
+
on_epoch=True,
|
182 |
+
logger=True,
|
183 |
+
prog_bar=True,
|
184 |
+
sync_dist=True,
|
185 |
+
)
|
186 |
+
|
187 |
+
attn = attn_dict["attn"][0]
|
188 |
+
self.logger.experiment.add_image(
|
189 |
+
f"val/alignment",
|
190 |
+
plot_tensor(attn.cpu()),
|
191 |
+
self.current_epoch,
|
192 |
+
dataformats="HWC",
|
193 |
+
)
|
194 |
+
return total_loss
|
195 |
+
|
196 |
+
def on_validation_end(self) -> None:
|
197 |
+
if self.trainer.is_global_zero:
|
198 |
+
one_batch = next(iter(self.trainer.val_dataloaders))
|
199 |
+
|
200 |
+
if self.current_epoch == 0:
|
201 |
+
log.debug("Plotting original samples")
|
202 |
+
for i in range(2):
|
203 |
+
y = one_batch["y"][i].unsqueeze(0).to(self.device)
|
204 |
+
self.logger.experiment.add_image(
|
205 |
+
f"original/{i}",
|
206 |
+
plot_tensor(y.squeeze().cpu()),
|
207 |
+
self.current_epoch,
|
208 |
+
dataformats="HWC",
|
209 |
+
)
|
210 |
+
|
211 |
+
log.debug("Synthesising...")
|
212 |
+
for i in range(2):
|
213 |
+
x = one_batch["x"][i].unsqueeze(0).to(self.device)
|
214 |
+
x_lengths = one_batch["x_lengths"][i].unsqueeze(0).to(self.device)
|
215 |
+
y = one_batch["y"][i].unsqueeze(0).to(self.device)
|
216 |
+
y_lengths = one_batch["y_lengths"][i].unsqueeze(0).to(self.device)
|
217 |
+
# prompt = one_batch["prompt_spec"][i].unsqueeze(0).to(self.device)
|
218 |
+
# prompt_lengths = one_batch["prompt_lengths"][i].unsqueeze(0).to(self.device)
|
219 |
+
prompt = y
|
220 |
+
prompt_lengths = y_lengths
|
221 |
+
prompt_slice, ids_slice = commons.rand_slice_segments(
|
222 |
+
prompt, prompt_lengths, self.prompt_size
|
223 |
+
)
|
224 |
+
output = self.synthesise(x[:, :x_lengths], x_lengths, prompt=prompt_slice, n_timesteps=10, guidance_scale=0.0)
|
225 |
+
y_enc, y_dec = output["encoder_outputs"], output["decoder_outputs"]
|
226 |
+
attn = output["attn"]
|
227 |
+
self.logger.experiment.add_image(
|
228 |
+
f"generated_enc/{i}",
|
229 |
+
plot_tensor(y_enc.squeeze().cpu()),
|
230 |
+
self.current_epoch,
|
231 |
+
dataformats="HWC",
|
232 |
+
)
|
233 |
+
self.logger.experiment.add_image(
|
234 |
+
f"generated_dec/{i}",
|
235 |
+
plot_tensor(y_dec.squeeze().cpu()),
|
236 |
+
self.current_epoch,
|
237 |
+
dataformats="HWC",
|
238 |
+
)
|
239 |
+
self.logger.experiment.add_image(
|
240 |
+
f"alignment/{i}",
|
241 |
+
plot_tensor(attn.squeeze().cpu()),
|
242 |
+
self.current_epoch,
|
243 |
+
dataformats="HWC",
|
244 |
+
)
|
245 |
+
|
246 |
+
def on_before_optimizer_step(self, optimizer):
|
247 |
+
self.log_dict({f"grad_norm/{k}": v for k, v in grad_norm(self, norm_type=2).items()})
|
pflow/models/components/__init__.py
ADDED
File without changes
|
pflow/models/components/aligner.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, Tensor
|
6 |
+
from torch.nn import Module
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from beartype import beartype
|
12 |
+
from beartype.typing import Optional
|
13 |
+
|
14 |
+
def exists(val):
|
15 |
+
return val is not None
|
16 |
+
|
17 |
+
class AlignerNet(Module):
|
18 |
+
"""alignment model https://arxiv.org/pdf/2108.10447.pdf """
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
dim_in=80,
|
22 |
+
dim_hidden=512,
|
23 |
+
attn_channels=80,
|
24 |
+
temperature=0.0005,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.temperature = temperature
|
28 |
+
|
29 |
+
self.key_layers = nn.ModuleList([
|
30 |
+
nn.Conv1d(
|
31 |
+
dim_hidden,
|
32 |
+
dim_hidden * 2,
|
33 |
+
kernel_size=3,
|
34 |
+
padding=1,
|
35 |
+
bias=True,
|
36 |
+
),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv1d(dim_hidden * 2, attn_channels, kernel_size=1, padding=0, bias=True)
|
39 |
+
])
|
40 |
+
|
41 |
+
self.query_layers = nn.ModuleList([
|
42 |
+
nn.Conv1d(
|
43 |
+
dim_in,
|
44 |
+
dim_in * 2,
|
45 |
+
kernel_size=3,
|
46 |
+
padding=1,
|
47 |
+
bias=True,
|
48 |
+
),
|
49 |
+
nn.ReLU(inplace=True),
|
50 |
+
nn.Conv1d(dim_in * 2, dim_in, kernel_size=1, padding=0, bias=True),
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
nn.Conv1d(dim_in, attn_channels, kernel_size=1, padding=0, bias=True)
|
53 |
+
])
|
54 |
+
|
55 |
+
@beartype
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
queries: Tensor,
|
59 |
+
keys: Tensor,
|
60 |
+
mask: Optional[Tensor] = None
|
61 |
+
):
|
62 |
+
key_out = keys
|
63 |
+
for layer in self.key_layers:
|
64 |
+
key_out = layer(key_out)
|
65 |
+
|
66 |
+
query_out = queries
|
67 |
+
for layer in self.query_layers:
|
68 |
+
query_out = layer(query_out)
|
69 |
+
|
70 |
+
key_out = rearrange(key_out, 'b c t -> b t c')
|
71 |
+
query_out = rearrange(query_out, 'b c t -> b t c')
|
72 |
+
|
73 |
+
attn_logp = torch.cdist(query_out, key_out)
|
74 |
+
attn_logp = rearrange(attn_logp, 'b ... -> b 1 ...')
|
75 |
+
|
76 |
+
if exists(mask):
|
77 |
+
mask = rearrange(mask.bool(), '... c -> ... 1 c')
|
78 |
+
attn_logp.data.masked_fill_(~mask, -torch.finfo(attn_logp.dtype).max)
|
79 |
+
|
80 |
+
attn = attn_logp.softmax(dim = -1)
|
81 |
+
return attn, attn_logp
|
82 |
+
|
83 |
+
def pad_tensor(input, pad, value=0):
|
84 |
+
pad = [item for sublist in reversed(pad) for item in sublist] # Flatten the tuple
|
85 |
+
assert len(pad) // 2 == len(input.shape), 'Padding dimensions do not match input dimensions'
|
86 |
+
return F.pad(input, pad, mode='constant', value=value)
|
87 |
+
|
88 |
+
def maximum_path(value, mask, const=None):
|
89 |
+
device = value.device
|
90 |
+
dtype = value.dtype
|
91 |
+
if not exists(const):
|
92 |
+
const = torch.tensor(float('-inf')).to(device) # Patch for Sphinx complaint
|
93 |
+
value = value * mask
|
94 |
+
|
95 |
+
b, t_x, t_y = value.shape
|
96 |
+
direction = torch.zeros(value.shape, dtype=torch.int64, device=device)
|
97 |
+
v = torch.zeros((b, t_x), dtype=torch.float32, device=device)
|
98 |
+
x_range = torch.arange(t_x, dtype=torch.float32, device=device).view(1, -1)
|
99 |
+
|
100 |
+
for j in range(t_y):
|
101 |
+
v0 = pad_tensor(v, ((0, 0), (1, 0)), value = const)[:, :-1]
|
102 |
+
v1 = v
|
103 |
+
max_mask = v1 >= v0
|
104 |
+
v_max = torch.where(max_mask, v1, v0)
|
105 |
+
direction[:, :, j] = max_mask
|
106 |
+
|
107 |
+
index_mask = x_range <= j
|
108 |
+
v = torch.where(index_mask.view(1,-1), v_max + value[:, :, j], const)
|
109 |
+
|
110 |
+
direction = torch.where(mask.bool(), direction, 1)
|
111 |
+
|
112 |
+
path = torch.zeros(value.shape, dtype=torch.float32, device=device)
|
113 |
+
index = mask[:, :, 0].sum(1).long() - 1
|
114 |
+
index_range = torch.arange(b, device=device)
|
115 |
+
|
116 |
+
for j in reversed(range(t_y)):
|
117 |
+
path[index_range, index, j] = 1
|
118 |
+
index = index + direction[index_range, index, j] - 1
|
119 |
+
|
120 |
+
path = path * mask.float()
|
121 |
+
path = path.to(dtype=dtype)
|
122 |
+
return path
|
123 |
+
|
124 |
+
class ForwardSumLoss(Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
blank_logprob = -1
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
self.blank_logprob = blank_logprob
|
131 |
+
|
132 |
+
self.ctc_loss = torch.nn.CTCLoss(
|
133 |
+
blank = 0, # check this value
|
134 |
+
zero_infinity = True
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, attn_logprob, key_lens, query_lens):
|
138 |
+
device, blank_logprob = attn_logprob.device, self.blank_logprob
|
139 |
+
max_key_len = attn_logprob.size(-1)
|
140 |
+
|
141 |
+
# Reorder input to [query_len, batch_size, key_len]
|
142 |
+
attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t')
|
143 |
+
|
144 |
+
# Add blank label
|
145 |
+
attn_logprob = F.pad(attn_logprob, (1, 0, 0, 0, 0, 0), value = blank_logprob)
|
146 |
+
|
147 |
+
# Convert to log probabilities
|
148 |
+
# Note: Mask out probs beyond key_len
|
149 |
+
mask_value = -torch.finfo(attn_logprob.dtype).max
|
150 |
+
attn_logprob.masked_fill_(torch.arange(max_key_len + 1, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), mask_value)
|
151 |
+
|
152 |
+
attn_logprob = attn_logprob.log_softmax(dim = -1)
|
153 |
+
|
154 |
+
# Target sequences
|
155 |
+
target_seqs = torch.arange(1, max_key_len + 1, device=device, dtype=torch.long)
|
156 |
+
target_seqs = repeat(target_seqs, 'n -> b n', b = key_lens.numel())
|
157 |
+
|
158 |
+
# Evaluate CTC loss
|
159 |
+
cost = self.ctc_loss(attn_logprob, target_seqs, query_lens, key_lens)
|
160 |
+
|
161 |
+
return cost
|
162 |
+
|
163 |
+
class BinLoss(Module):
|
164 |
+
def forward(self, attn_hard, attn_logprob, key_lens):
|
165 |
+
batch, device = attn_logprob.shape[0], attn_logprob.device
|
166 |
+
max_key_len = attn_logprob.size(-1)
|
167 |
+
|
168 |
+
# Reorder input to [query_len, batch_size, key_len]
|
169 |
+
attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t')
|
170 |
+
attn_hard = rearrange(attn_hard, 'b t c -> c b t')
|
171 |
+
|
172 |
+
mask_value = -torch.finfo(attn_logprob.dtype).max
|
173 |
+
|
174 |
+
attn_logprob.masked_fill_(torch.arange(max_key_len, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), mask_value)
|
175 |
+
attn_logprob = attn_logprob.log_softmax(dim = -1)
|
176 |
+
|
177 |
+
return (attn_hard * attn_logprob).sum() / batch
|
178 |
+
|
179 |
+
class Aligner(Module):
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
dim_in,
|
183 |
+
dim_hidden,
|
184 |
+
attn_channels=80,
|
185 |
+
temperature=0.0005
|
186 |
+
):
|
187 |
+
super().__init__()
|
188 |
+
self.dim_in = dim_in
|
189 |
+
self.dim_hidden = dim_hidden
|
190 |
+
self.attn_channels = attn_channels
|
191 |
+
self.temperature = temperature
|
192 |
+
self.aligner = AlignerNet(
|
193 |
+
dim_in = self.dim_in,
|
194 |
+
dim_hidden = self.dim_hidden,
|
195 |
+
attn_channels = self.attn_channels,
|
196 |
+
temperature = self.temperature
|
197 |
+
)
|
198 |
+
|
199 |
+
def forward(
|
200 |
+
self,
|
201 |
+
x,
|
202 |
+
x_mask,
|
203 |
+
y,
|
204 |
+
y_mask
|
205 |
+
):
|
206 |
+
alignment_soft, alignment_logprob = self.aligner(y, rearrange(x, 'b d t -> b t d'), x_mask)
|
207 |
+
|
208 |
+
x_mask = rearrange(x_mask, '... i -> ... i 1')
|
209 |
+
y_mask = rearrange(y_mask, '... j -> ... 1 j')
|
210 |
+
attn_mask = x_mask * y_mask
|
211 |
+
attn_mask = rearrange(attn_mask, 'b 1 i j -> b i j')
|
212 |
+
|
213 |
+
alignment_soft = rearrange(alignment_soft, 'b 1 c t -> b t c')
|
214 |
+
alignment_mask = maximum_path(alignment_soft, attn_mask)
|
215 |
+
|
216 |
+
alignment_hard = torch.sum(alignment_mask, -1).int()
|
217 |
+
return alignment_hard, alignment_soft, alignment_logprob, alignment_mask
|
218 |
+
|
219 |
+
if __name__ == '__main__':
|
220 |
+
batch_size = 10
|
221 |
+
seq_len_y = 200 # length of sequence y
|
222 |
+
seq_len_x = 35
|
223 |
+
feature_dim = 80 # feature dimension
|
224 |
+
|
225 |
+
x = torch.randn(batch_size, 512, seq_len_x)
|
226 |
+
x = x.transpose(1,2) #dim-1 is the channels for conv
|
227 |
+
y = torch.randn(batch_size, seq_len_y, feature_dim)
|
228 |
+
y = y.transpose(1,2) #dim-1 is the channels for conv
|
229 |
+
|
230 |
+
# Create masks
|
231 |
+
x_mask = torch.ones(batch_size, 1, seq_len_x)
|
232 |
+
y_mask = torch.ones(batch_size, 1, seq_len_y)
|
233 |
+
|
234 |
+
align = Aligner(dim_in = 80, dim_hidden=512, attn_channels=80)
|
235 |
+
alignment_hard, alignment_soft, alignment_logprob, alignment_mas = align(x, x_mask, y, y_mask)
|
pflow/models/components/attentions.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from https://github.com/jaywalnut310/vits
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
from modules import LayerNorm
|
9 |
+
|
10 |
+
|
11 |
+
class Encoder(nn.Module): # backward compatible vits2 encoder
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
hidden_channels,
|
15 |
+
filter_channels,
|
16 |
+
n_heads,
|
17 |
+
n_layers,
|
18 |
+
kernel_size=1,
|
19 |
+
p_dropout=0.0,
|
20 |
+
window_size=4,
|
21 |
+
**kwargs
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.hidden_channels = hidden_channels
|
25 |
+
self.filter_channels = filter_channels
|
26 |
+
self.n_heads = n_heads
|
27 |
+
self.n_layers = n_layers
|
28 |
+
self.kernel_size = kernel_size
|
29 |
+
self.p_dropout = p_dropout
|
30 |
+
self.window_size = window_size
|
31 |
+
|
32 |
+
self.drop = nn.Dropout(p_dropout)
|
33 |
+
self.attn_layers = nn.ModuleList()
|
34 |
+
self.norm_layers_1 = nn.ModuleList()
|
35 |
+
self.ffn_layers = nn.ModuleList()
|
36 |
+
self.norm_layers_2 = nn.ModuleList()
|
37 |
+
# if kwargs has spk_emb_dim, then add a linear layer to project spk_emb_dim to hidden_channels
|
38 |
+
self.cond_layer_idx = self.n_layers
|
39 |
+
if "gin_channels" in kwargs:
|
40 |
+
self.gin_channels = kwargs["gin_channels"]
|
41 |
+
if self.gin_channels != 0:
|
42 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
43 |
+
# vits2 says 3rd block, so idx is 2 by default
|
44 |
+
self.cond_layer_idx = (
|
45 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
46 |
+
)
|
47 |
+
assert (
|
48 |
+
self.cond_layer_idx < self.n_layers
|
49 |
+
), "cond_layer_idx should be less than n_layers"
|
50 |
+
|
51 |
+
for i in range(self.n_layers):
|
52 |
+
self.attn_layers.append(
|
53 |
+
MultiHeadAttention(
|
54 |
+
hidden_channels,
|
55 |
+
hidden_channels,
|
56 |
+
n_heads,
|
57 |
+
p_dropout=p_dropout,
|
58 |
+
window_size=window_size,
|
59 |
+
)
|
60 |
+
)
|
61 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
62 |
+
self.ffn_layers.append(
|
63 |
+
FFN(
|
64 |
+
hidden_channels,
|
65 |
+
hidden_channels,
|
66 |
+
filter_channels,
|
67 |
+
kernel_size,
|
68 |
+
p_dropout=p_dropout,
|
69 |
+
)
|
70 |
+
)
|
71 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
72 |
+
|
73 |
+
def forward(self, x, x_mask, g=None):
|
74 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
75 |
+
x = x * x_mask
|
76 |
+
for i in range(self.n_layers):
|
77 |
+
if i == self.cond_layer_idx and g is not None:
|
78 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
79 |
+
g = g.transpose(1, 2)
|
80 |
+
x = x + g
|
81 |
+
x = x * x_mask
|
82 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
83 |
+
y = self.drop(y)
|
84 |
+
x = self.norm_layers_1[i](x + y)
|
85 |
+
|
86 |
+
y = self.ffn_layers[i](x, x_mask)
|
87 |
+
y = self.drop(y)
|
88 |
+
x = self.norm_layers_2[i](x + y)
|
89 |
+
x = x * x_mask
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
class Decoder(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
hidden_channels,
|
97 |
+
filter_channels,
|
98 |
+
n_heads,
|
99 |
+
n_layers,
|
100 |
+
kernel_size=1,
|
101 |
+
p_dropout=0.0,
|
102 |
+
proximal_bias=False,
|
103 |
+
proximal_init=True,
|
104 |
+
**kwargs
|
105 |
+
):
|
106 |
+
super().__init__()
|
107 |
+
self.hidden_channels = hidden_channels
|
108 |
+
self.filter_channels = filter_channels
|
109 |
+
self.n_heads = n_heads
|
110 |
+
self.n_layers = n_layers
|
111 |
+
self.kernel_size = kernel_size
|
112 |
+
self.p_dropout = p_dropout
|
113 |
+
self.proximal_bias = proximal_bias
|
114 |
+
self.proximal_init = proximal_init
|
115 |
+
|
116 |
+
self.drop = nn.Dropout(p_dropout)
|
117 |
+
self.self_attn_layers = nn.ModuleList()
|
118 |
+
self.norm_layers_0 = nn.ModuleList()
|
119 |
+
self.encdec_attn_layers = nn.ModuleList()
|
120 |
+
self.norm_layers_1 = nn.ModuleList()
|
121 |
+
self.ffn_layers = nn.ModuleList()
|
122 |
+
self.norm_layers_2 = nn.ModuleList()
|
123 |
+
for i in range(self.n_layers):
|
124 |
+
self.self_attn_layers.append(
|
125 |
+
MultiHeadAttention(
|
126 |
+
hidden_channels,
|
127 |
+
hidden_channels,
|
128 |
+
n_heads,
|
129 |
+
p_dropout=p_dropout,
|
130 |
+
proximal_bias=proximal_bias,
|
131 |
+
proximal_init=proximal_init,
|
132 |
+
)
|
133 |
+
)
|
134 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
135 |
+
self.encdec_attn_layers.append(
|
136 |
+
MultiHeadAttention(
|
137 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
138 |
+
)
|
139 |
+
)
|
140 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
141 |
+
self.ffn_layers.append(
|
142 |
+
FFN(
|
143 |
+
hidden_channels,
|
144 |
+
hidden_channels,
|
145 |
+
filter_channels,
|
146 |
+
kernel_size,
|
147 |
+
p_dropout=p_dropout,
|
148 |
+
causal=True,
|
149 |
+
)
|
150 |
+
)
|
151 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
152 |
+
|
153 |
+
def forward(self, x, x_mask, h, h_mask):
|
154 |
+
"""
|
155 |
+
x: decoder input
|
156 |
+
h: encoder output
|
157 |
+
"""
|
158 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
159 |
+
device=x.device, dtype=x.dtype
|
160 |
+
)
|
161 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
162 |
+
x = x * x_mask
|
163 |
+
for i in range(self.n_layers):
|
164 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
165 |
+
y = self.drop(y)
|
166 |
+
x = self.norm_layers_0[i](x + y)
|
167 |
+
|
168 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
169 |
+
y = self.drop(y)
|
170 |
+
x = self.norm_layers_1[i](x + y)
|
171 |
+
|
172 |
+
y = self.ffn_layers[i](x, x_mask)
|
173 |
+
y = self.drop(y)
|
174 |
+
x = self.norm_layers_2[i](x + y)
|
175 |
+
x = x * x_mask
|
176 |
+
return x
|
177 |
+
|
178 |
+
|
179 |
+
class MultiHeadAttention(nn.Module):
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
channels,
|
183 |
+
out_channels,
|
184 |
+
n_heads,
|
185 |
+
p_dropout=0.0,
|
186 |
+
window_size=None,
|
187 |
+
heads_share=True,
|
188 |
+
block_length=None,
|
189 |
+
proximal_bias=False,
|
190 |
+
proximal_init=False,
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
assert channels % n_heads == 0
|
194 |
+
|
195 |
+
self.channels = channels
|
196 |
+
self.out_channels = out_channels
|
197 |
+
self.n_heads = n_heads
|
198 |
+
self.p_dropout = p_dropout
|
199 |
+
self.window_size = window_size
|
200 |
+
self.heads_share = heads_share
|
201 |
+
self.block_length = block_length
|
202 |
+
self.proximal_bias = proximal_bias
|
203 |
+
self.proximal_init = proximal_init
|
204 |
+
self.attn = None
|
205 |
+
|
206 |
+
self.k_channels = channels // n_heads
|
207 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
208 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
209 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
210 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
211 |
+
self.drop = nn.Dropout(p_dropout)
|
212 |
+
|
213 |
+
if window_size is not None:
|
214 |
+
n_heads_rel = 1 if heads_share else n_heads
|
215 |
+
rel_stddev = self.k_channels**-0.5
|
216 |
+
self.emb_rel_k = nn.Parameter(
|
217 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
218 |
+
* rel_stddev
|
219 |
+
)
|
220 |
+
self.emb_rel_v = nn.Parameter(
|
221 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
222 |
+
* rel_stddev
|
223 |
+
)
|
224 |
+
|
225 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
226 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
227 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
228 |
+
if proximal_init:
|
229 |
+
with torch.no_grad():
|
230 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
231 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
232 |
+
|
233 |
+
def forward(self, x, c, attn_mask=None):
|
234 |
+
q = self.conv_q(x)
|
235 |
+
k = self.conv_k(c)
|
236 |
+
v = self.conv_v(c)
|
237 |
+
|
238 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
239 |
+
|
240 |
+
x = self.conv_o(x)
|
241 |
+
return x
|
242 |
+
|
243 |
+
def attention(self, query, key, value, mask=None):
|
244 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
245 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
246 |
+
# query = query.view(
|
247 |
+
# b,
|
248 |
+
# self.n_heads,
|
249 |
+
# self.k_channels,
|
250 |
+
# t_t
|
251 |
+
# ).transpose(2, 3) #[b,h,t_t,c], d=h*c
|
252 |
+
# key = key.view(
|
253 |
+
# b,
|
254 |
+
# self.n_heads,
|
255 |
+
# self.k_channels,
|
256 |
+
# t_s
|
257 |
+
# ).transpose(2, 3) #[b,h,t_s,c]
|
258 |
+
# value = value.view(
|
259 |
+
# b,
|
260 |
+
# self.n_heads,
|
261 |
+
# self.k_channels,
|
262 |
+
# t_s
|
263 |
+
# ).transpose(2, 3) #[b,h,t_s,c]
|
264 |
+
# scores = torch.matmul(
|
265 |
+
# query / math.sqrt(self.k_channels), key.transpose(-2, -1)
|
266 |
+
# ) #[b,h,t_t,t_s]
|
267 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t) # [b,h,c,t_t]
|
268 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s) # [b,h,c,t_s]
|
269 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s) # [b,h,c,t_s]
|
270 |
+
scores = torch.einsum(
|
271 |
+
"bhdt,bhds -> bhts", query / math.sqrt(self.k_channels), key
|
272 |
+
) # [b,h,t_t,t_s]
|
273 |
+
# if self.window_size is not None:
|
274 |
+
# assert t_s == t_t, "Relative attention is only available for self-attention."
|
275 |
+
# key_relative_embeddings = self._get_relative_embeddings(
|
276 |
+
# self.emb_rel_k, t_s
|
277 |
+
# )
|
278 |
+
# rel_logits = self._matmul_with_relative_keys(
|
279 |
+
# query / math.sqrt(self.k_channels), key_relative_embeddings
|
280 |
+
# ) #[b,h,t_t,d],[h or 1,e,d] ->[b,h,t_t,e]
|
281 |
+
# scores_local = self._relative_position_to_absolute_position(rel_logits)
|
282 |
+
# scores = scores + scores_local
|
283 |
+
# if self.proximal_bias:
|
284 |
+
# assert t_s == t_t, "Proximal bias is only available for self-attention."
|
285 |
+
# scores = scores + \
|
286 |
+
# self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
287 |
+
# if mask is not None:
|
288 |
+
# scores = scores.masked_fill(mask == 0, -1e4)
|
289 |
+
# if self.block_length is not None:
|
290 |
+
# assert t_s == t_t, "Local attention is only available for self-attention."
|
291 |
+
# block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
292 |
+
# scores = scores.masked_fill(block_mask == 0, -1e4)
|
293 |
+
# p_attn = F.softmax(scores, dim=-1) # [b, h, t_t, t_s]
|
294 |
+
# p_attn = self.drop(p_attn)
|
295 |
+
# output = torch.matmul(p_attn, value) # [b,h,t_t,t_s],[b,h,t_s,c] -> [b,h,t_t,c]
|
296 |
+
# if self.window_size is not None:
|
297 |
+
# relative_weights = self._absolute_position_to_relative_position(p_attn) #[b, h, t_t, 2*t_t-1]
|
298 |
+
# value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) #[h or 1, 2*t_t-1, c]
|
299 |
+
# output = output + \
|
300 |
+
# self._matmul_with_relative_values(
|
301 |
+
# relative_weights, value_relative_embeddings) # [b, h, t_t, 2*t_t-1],[h or 1, 2*t_t-1, c] -> [b, h, t_t, c]
|
302 |
+
# output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, c] -> [b,h,c,t_t] -> [b, d, t_t]
|
303 |
+
if self.window_size is not None:
|
304 |
+
assert (
|
305 |
+
t_s == t_t
|
306 |
+
), "Relative attention is only available for self-attention."
|
307 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
308 |
+
rel_logits = torch.einsum(
|
309 |
+
"bhdt,hed->bhte",
|
310 |
+
query / math.sqrt(self.k_channels),
|
311 |
+
key_relative_embeddings,
|
312 |
+
) # [b,h,c,t_t],[h or 1,e,c] ->[b,h,t_t,e]
|
313 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
314 |
+
scores = scores + scores_local
|
315 |
+
if self.proximal_bias:
|
316 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
317 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
318 |
+
device=scores.device, dtype=scores.dtype
|
319 |
+
)
|
320 |
+
if mask is not None:
|
321 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
322 |
+
if self.block_length is not None:
|
323 |
+
assert (
|
324 |
+
t_s == t_t
|
325 |
+
), "Local attention is only available for self-attention."
|
326 |
+
block_mask = (
|
327 |
+
torch.ones_like(scores)
|
328 |
+
.triu(-self.block_length)
|
329 |
+
.tril(self.block_length)
|
330 |
+
)
|
331 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
332 |
+
p_attn = F.softmax(scores, dim=-1) # [b, h, t_t, t_s]
|
333 |
+
p_attn = self.drop(p_attn)
|
334 |
+
output = torch.einsum(
|
335 |
+
"bhcs,bhts->bhct", value, p_attn
|
336 |
+
) # [b,h,c,t_s],[b,h,t_t,t_s] -> [b,h,c,t_t]
|
337 |
+
if self.window_size is not None:
|
338 |
+
relative_weights = self._absolute_position_to_relative_position(
|
339 |
+
p_attn
|
340 |
+
) # [b, h, t_t, 2*t_t-1]
|
341 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
342 |
+
self.emb_rel_v, t_s
|
343 |
+
) # [h or 1, 2*t_t-1, c]
|
344 |
+
output = output + torch.einsum(
|
345 |
+
"bhte,hec->bhct", relative_weights, value_relative_embeddings
|
346 |
+
) # [b, h, t_t, 2*t_t-1],[h or 1, 2*t_t-1, c] -> [b, h, c, t_t]
|
347 |
+
output = output.view(b, d, t_t) # [b, h, c, t_t] -> [b, d, t_t]
|
348 |
+
return output, p_attn
|
349 |
+
|
350 |
+
def _matmul_with_relative_values(self, x, y):
|
351 |
+
"""
|
352 |
+
x: [b, h, l, m]
|
353 |
+
y: [h or 1, m, d]
|
354 |
+
ret: [b, h, l, d]
|
355 |
+
"""
|
356 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
357 |
+
return ret
|
358 |
+
|
359 |
+
def _matmul_with_relative_keys(self, x, y):
|
360 |
+
"""
|
361 |
+
x: [b, h, l, d]
|
362 |
+
y: [h or 1, m, d]
|
363 |
+
ret: [b, h, l, m]
|
364 |
+
"""
|
365 |
+
# ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
366 |
+
ret = torch.einsum("bhld,hmd -> bhlm", x, y)
|
367 |
+
return ret
|
368 |
+
|
369 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
370 |
+
max_relative_position = 2 * self.window_size + 1
|
371 |
+
# Pad first before slice to avoid using cond ops.
|
372 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
373 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
374 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
375 |
+
if pad_length > 0:
|
376 |
+
padded_relative_embeddings = F.pad(
|
377 |
+
relative_embeddings,
|
378 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
379 |
+
)
|
380 |
+
else:
|
381 |
+
padded_relative_embeddings = relative_embeddings
|
382 |
+
used_relative_embeddings = padded_relative_embeddings[
|
383 |
+
:, slice_start_position:slice_end_position
|
384 |
+
]
|
385 |
+
return used_relative_embeddings
|
386 |
+
|
387 |
+
def _relative_position_to_absolute_position(self, x):
|
388 |
+
"""
|
389 |
+
x: [b, h, l, 2*l-1]
|
390 |
+
ret: [b, h, l, l]
|
391 |
+
"""
|
392 |
+
batch, heads, length, _ = x.size()
|
393 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
394 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
395 |
+
|
396 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
397 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
398 |
+
x_flat = F.pad(
|
399 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
400 |
+
)
|
401 |
+
|
402 |
+
# Reshape and slice out the padded elements.
|
403 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
404 |
+
:, :, :length, length - 1 :
|
405 |
+
]
|
406 |
+
return x_final
|
407 |
+
|
408 |
+
def _absolute_position_to_relative_position(self, x):
|
409 |
+
"""
|
410 |
+
x: [b, h, l, l]
|
411 |
+
ret: [b, h, l, 2*l-1]
|
412 |
+
"""
|
413 |
+
batch, heads, length, _ = x.size()
|
414 |
+
# padd along column
|
415 |
+
x = F.pad(
|
416 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
417 |
+
)
|
418 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
419 |
+
# add 0's in the beginning that will skew the elements after reshape
|
420 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
421 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
422 |
+
return x_final
|
423 |
+
|
424 |
+
def _attention_bias_proximal(self, length):
|
425 |
+
"""Bias for self-attention to encourage attention to close positions.
|
426 |
+
Args:
|
427 |
+
length: an integer scalar.
|
428 |
+
Returns:
|
429 |
+
a Tensor with shape [1, 1, length, length]
|
430 |
+
"""
|
431 |
+
r = torch.arange(length, dtype=torch.float32)
|
432 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
433 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
434 |
+
|
435 |
+
|
436 |
+
class FFN(nn.Module):
|
437 |
+
def __init__(
|
438 |
+
self,
|
439 |
+
in_channels,
|
440 |
+
out_channels,
|
441 |
+
filter_channels,
|
442 |
+
kernel_size,
|
443 |
+
p_dropout=0.0,
|
444 |
+
activation=None,
|
445 |
+
causal=False,
|
446 |
+
):
|
447 |
+
super().__init__()
|
448 |
+
self.in_channels = in_channels
|
449 |
+
self.out_channels = out_channels
|
450 |
+
self.filter_channels = filter_channels
|
451 |
+
self.kernel_size = kernel_size
|
452 |
+
self.p_dropout = p_dropout
|
453 |
+
self.activation = activation
|
454 |
+
self.causal = causal
|
455 |
+
|
456 |
+
if causal:
|
457 |
+
self.padding = self._causal_padding
|
458 |
+
else:
|
459 |
+
self.padding = self._same_padding
|
460 |
+
|
461 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
462 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
463 |
+
self.drop = nn.Dropout(p_dropout)
|
464 |
+
|
465 |
+
def forward(self, x, x_mask):
|
466 |
+
x = self.conv_1(self.padding(x * x_mask))
|
467 |
+
if self.activation == "gelu":
|
468 |
+
x = x * torch.sigmoid(1.702 * x)
|
469 |
+
else:
|
470 |
+
x = torch.relu(x)
|
471 |
+
x = self.drop(x)
|
472 |
+
x = self.conv_2(self.padding(x * x_mask))
|
473 |
+
return x * x_mask
|
474 |
+
|
475 |
+
def _causal_padding(self, x):
|
476 |
+
if self.kernel_size == 1:
|
477 |
+
return x
|
478 |
+
pad_l = self.kernel_size - 1
|
479 |
+
pad_r = 0
|
480 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
481 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
482 |
+
return x
|
483 |
+
|
484 |
+
def _same_padding(self, x):
|
485 |
+
if self.kernel_size == 1:
|
486 |
+
return x
|
487 |
+
pad_l = (self.kernel_size - 1) // 2
|
488 |
+
pad_r = self.kernel_size // 2
|
489 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
490 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
491 |
+
return x
|
pflow/models/components/commons.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from https://github.com/jaywalnut310/vits
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def init_weights(m, mean=0.0, std=0.01):
|
8 |
+
classname = m.__class__.__name__
|
9 |
+
if classname.find("Conv") != -1:
|
10 |
+
m.weight.data.normal_(mean, std)
|
11 |
+
|
12 |
+
|
13 |
+
def get_padding(kernel_size, dilation=1):
|
14 |
+
return int((kernel_size * dilation - dilation) / 2)
|
15 |
+
|
16 |
+
|
17 |
+
def convert_pad_shape(pad_shape):
|
18 |
+
l = pad_shape[::-1]
|
19 |
+
pad_shape = [item for sublist in l for item in sublist]
|
20 |
+
return pad_shape
|
21 |
+
|
22 |
+
|
23 |
+
def intersperse(lst, item):
|
24 |
+
result = [item] * (len(lst) * 2 + 1)
|
25 |
+
result[1::2] = lst
|
26 |
+
return result
|
27 |
+
|
28 |
+
|
29 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
30 |
+
"""KL(P||Q)"""
|
31 |
+
kl = (logs_q - logs_p) - 0.5
|
32 |
+
kl += (
|
33 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
34 |
+
)
|
35 |
+
return kl
|
36 |
+
|
37 |
+
|
38 |
+
def rand_gumbel(shape):
|
39 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
40 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
41 |
+
return -torch.log(-torch.log(uniform_samples))
|
42 |
+
|
43 |
+
|
44 |
+
def rand_gumbel_like(x):
|
45 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
46 |
+
return g
|
47 |
+
|
48 |
+
|
49 |
+
def slice_segments(x, ids_str, segment_size=4):
|
50 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
51 |
+
for i in range(x.size(0)):
|
52 |
+
idx_str = ids_str[i]
|
53 |
+
idx_end = idx_str + segment_size
|
54 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
55 |
+
return ret
|
56 |
+
|
57 |
+
|
58 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
59 |
+
b, d, t = x.size()
|
60 |
+
if x_lengths is None:
|
61 |
+
x_lengths = t
|
62 |
+
ids_str_max = x_lengths - segment_size + 1
|
63 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
64 |
+
ids_str = torch.max(torch.zeros(ids_str.size()).to(ids_str.device), ids_str).to(
|
65 |
+
dtype=torch.long
|
66 |
+
)
|
67 |
+
ret = slice_segments(x, ids_str, segment_size)
|
68 |
+
return ret, ids_str
|
69 |
+
|
70 |
+
|
71 |
+
def rand_slice_segments_for_cat(x, x_lengths=None, segment_size=4):
|
72 |
+
b, d, t = x.size()
|
73 |
+
if x_lengths is None:
|
74 |
+
x_lengths = t
|
75 |
+
ids_str_max = x_lengths - segment_size + 1
|
76 |
+
ids_str = torch.rand([b // 2]).to(device=x.device)
|
77 |
+
ids_str = (torch.cat([ids_str, ids_str], dim=0) * ids_str_max).to(dtype=torch.long)
|
78 |
+
ids_str = torch.max(torch.zeros(ids_str.size()).to(ids_str.device), ids_str).to(
|
79 |
+
dtype=torch.long
|
80 |
+
)
|
81 |
+
ret = slice_segments(x, ids_str, segment_size)
|
82 |
+
return ret, ids_str
|
83 |
+
|
84 |
+
|
85 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
86 |
+
position = torch.arange(length, dtype=torch.float)
|
87 |
+
num_timescales = channels // 2
|
88 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
89 |
+
num_timescales - 1
|
90 |
+
)
|
91 |
+
inv_timescales = min_timescale * torch.exp(
|
92 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
93 |
+
)
|
94 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
95 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
96 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
97 |
+
signal = signal.view(1, channels, length)
|
98 |
+
return signal
|
99 |
+
|
100 |
+
|
101 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
102 |
+
b, channels, length = x.size()
|
103 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
104 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
105 |
+
|
106 |
+
|
107 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
108 |
+
b, channels, length = x.size()
|
109 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
110 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
111 |
+
|
112 |
+
|
113 |
+
def subsequent_mask(length):
|
114 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
115 |
+
return mask
|
116 |
+
|
117 |
+
|
118 |
+
@torch.jit.script
|
119 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
120 |
+
n_channels_int = n_channels[0]
|
121 |
+
in_act = input_a + input_b
|
122 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
123 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
124 |
+
acts = t_act * s_act
|
125 |
+
return acts
|
126 |
+
|
127 |
+
|
128 |
+
def convert_pad_shape(pad_shape):
|
129 |
+
l = pad_shape[::-1]
|
130 |
+
pad_shape = [item for sublist in l for item in sublist]
|
131 |
+
return pad_shape
|
132 |
+
|
133 |
+
|
134 |
+
def shift_1d(x):
|
135 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
def sequence_mask(length, max_length=None):
|
140 |
+
if max_length is None:
|
141 |
+
max_length = length.max()
|
142 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
143 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
144 |
+
|
145 |
+
|
146 |
+
def generate_path(duration, mask):
|
147 |
+
"""
|
148 |
+
duration: [b, 1, t_x]
|
149 |
+
mask: [b, 1, t_y, t_x]
|
150 |
+
"""
|
151 |
+
device = duration.device
|
152 |
+
|
153 |
+
b, _, t_y, t_x = mask.shape
|
154 |
+
cum_duration = torch.cumsum(duration, -1)
|
155 |
+
|
156 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
157 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
158 |
+
path = path.view(b, t_x, t_y)
|
159 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
160 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
161 |
+
return path
|
162 |
+
|
163 |
+
|
164 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
165 |
+
if isinstance(parameters, torch.Tensor):
|
166 |
+
parameters = [parameters]
|
167 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
168 |
+
norm_type = float(norm_type)
|
169 |
+
if clip_value is not None:
|
170 |
+
clip_value = float(clip_value)
|
171 |
+
|
172 |
+
total_norm = 0
|
173 |
+
for p in parameters:
|
174 |
+
param_norm = p.grad.data.norm(norm_type)
|
175 |
+
total_norm += param_norm.item() ** norm_type
|
176 |
+
if clip_value is not None:
|
177 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
178 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
179 |
+
return total_norm
|
pflow/models/components/decoder.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from conformer import ConformerBlock
|
8 |
+
from diffusers.models.activations import get_activation
|
9 |
+
from einops import pack, rearrange, repeat
|
10 |
+
|
11 |
+
from pflow.models.components.transformer import BasicTransformerBlock
|
12 |
+
|
13 |
+
|
14 |
+
class SinusoidalPosEmb(torch.nn.Module):
|
15 |
+
def __init__(self, dim):
|
16 |
+
super().__init__()
|
17 |
+
self.dim = dim
|
18 |
+
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
|
19 |
+
|
20 |
+
def forward(self, x, scale=1000):
|
21 |
+
if x.ndim < 1:
|
22 |
+
x = x.unsqueeze(0)
|
23 |
+
device = x.device
|
24 |
+
half_dim = self.dim // 2
|
25 |
+
emb = math.log(10000) / (half_dim - 1)
|
26 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
27 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
28 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
29 |
+
return emb
|
30 |
+
|
31 |
+
|
32 |
+
class Block1D(torch.nn.Module):
|
33 |
+
def __init__(self, dim, dim_out, groups=8):
|
34 |
+
super().__init__()
|
35 |
+
self.block = torch.nn.Sequential(
|
36 |
+
torch.nn.Conv1d(dim, dim_out, 3, padding=1),
|
37 |
+
torch.nn.GroupNorm(groups, dim_out),
|
38 |
+
nn.Mish(),
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x, mask):
|
42 |
+
output = self.block(x * mask)
|
43 |
+
return output * mask
|
44 |
+
|
45 |
+
|
46 |
+
class ResnetBlock1D(torch.nn.Module):
|
47 |
+
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
48 |
+
super().__init__()
|
49 |
+
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
50 |
+
|
51 |
+
self.block1 = Block1D(dim, dim_out, groups=groups)
|
52 |
+
self.block2 = Block1D(dim_out, dim_out, groups=groups)
|
53 |
+
|
54 |
+
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
|
55 |
+
|
56 |
+
def forward(self, x, mask, time_emb):
|
57 |
+
h = self.block1(x, mask)
|
58 |
+
h += self.mlp(time_emb).unsqueeze(-1)
|
59 |
+
h = self.block2(h, mask)
|
60 |
+
output = h + self.res_conv(x * mask)
|
61 |
+
return output
|
62 |
+
|
63 |
+
|
64 |
+
class Downsample1D(nn.Module):
|
65 |
+
def __init__(self, dim):
|
66 |
+
super().__init__()
|
67 |
+
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
return self.conv(x)
|
71 |
+
|
72 |
+
|
73 |
+
class TimestepEmbedding(nn.Module):
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
in_channels: int,
|
77 |
+
time_embed_dim: int,
|
78 |
+
act_fn: str = "silu",
|
79 |
+
out_dim: int = None,
|
80 |
+
post_act_fn: Optional[str] = None,
|
81 |
+
cond_proj_dim=None,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
|
86 |
+
|
87 |
+
if cond_proj_dim is not None:
|
88 |
+
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
|
89 |
+
else:
|
90 |
+
self.cond_proj = None
|
91 |
+
|
92 |
+
self.act = get_activation(act_fn)
|
93 |
+
|
94 |
+
if out_dim is not None:
|
95 |
+
time_embed_dim_out = out_dim
|
96 |
+
else:
|
97 |
+
time_embed_dim_out = time_embed_dim
|
98 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
|
99 |
+
|
100 |
+
if post_act_fn is None:
|
101 |
+
self.post_act = None
|
102 |
+
else:
|
103 |
+
self.post_act = get_activation(post_act_fn)
|
104 |
+
|
105 |
+
def forward(self, sample, condition=None):
|
106 |
+
if condition is not None:
|
107 |
+
sample = sample + self.cond_proj(condition)
|
108 |
+
sample = self.linear_1(sample)
|
109 |
+
|
110 |
+
if self.act is not None:
|
111 |
+
sample = self.act(sample)
|
112 |
+
|
113 |
+
sample = self.linear_2(sample)
|
114 |
+
|
115 |
+
if self.post_act is not None:
|
116 |
+
sample = self.post_act(sample)
|
117 |
+
return sample
|
118 |
+
|
119 |
+
|
120 |
+
class Upsample1D(nn.Module):
|
121 |
+
"""A 1D upsampling layer with an optional convolution.
|
122 |
+
|
123 |
+
Parameters:
|
124 |
+
channels (`int`):
|
125 |
+
number of channels in the inputs and outputs.
|
126 |
+
use_conv (`bool`, default `False`):
|
127 |
+
option to use a convolution.
|
128 |
+
use_conv_transpose (`bool`, default `False`):
|
129 |
+
option to use a convolution transpose.
|
130 |
+
out_channels (`int`, optional):
|
131 |
+
number of output channels. Defaults to `channels`.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
|
135 |
+
super().__init__()
|
136 |
+
self.channels = channels
|
137 |
+
self.out_channels = out_channels or channels
|
138 |
+
self.use_conv = use_conv
|
139 |
+
self.use_conv_transpose = use_conv_transpose
|
140 |
+
self.name = name
|
141 |
+
|
142 |
+
self.conv = None
|
143 |
+
if use_conv_transpose:
|
144 |
+
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
|
145 |
+
elif use_conv:
|
146 |
+
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
|
147 |
+
|
148 |
+
def forward(self, inputs):
|
149 |
+
assert inputs.shape[1] == self.channels
|
150 |
+
if self.use_conv_transpose:
|
151 |
+
return self.conv(inputs)
|
152 |
+
|
153 |
+
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
|
154 |
+
|
155 |
+
if self.use_conv:
|
156 |
+
outputs = self.conv(outputs)
|
157 |
+
|
158 |
+
return outputs
|
159 |
+
|
160 |
+
|
161 |
+
class ConformerWrapper(ConformerBlock):
|
162 |
+
def __init__( # pylint: disable=useless-super-delegation
|
163 |
+
self,
|
164 |
+
*,
|
165 |
+
dim,
|
166 |
+
dim_head=64,
|
167 |
+
heads=8,
|
168 |
+
ff_mult=4,
|
169 |
+
conv_expansion_factor=2,
|
170 |
+
conv_kernel_size=31,
|
171 |
+
attn_dropout=0,
|
172 |
+
ff_dropout=0,
|
173 |
+
conv_dropout=0,
|
174 |
+
conv_causal=False,
|
175 |
+
):
|
176 |
+
super().__init__(
|
177 |
+
dim=dim,
|
178 |
+
dim_head=dim_head,
|
179 |
+
heads=heads,
|
180 |
+
ff_mult=ff_mult,
|
181 |
+
conv_expansion_factor=conv_expansion_factor,
|
182 |
+
conv_kernel_size=conv_kernel_size,
|
183 |
+
attn_dropout=attn_dropout,
|
184 |
+
ff_dropout=ff_dropout,
|
185 |
+
conv_dropout=conv_dropout,
|
186 |
+
conv_causal=conv_causal,
|
187 |
+
)
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
hidden_states,
|
192 |
+
attention_mask,
|
193 |
+
encoder_hidden_states=None,
|
194 |
+
encoder_attention_mask=None,
|
195 |
+
timestep=None,
|
196 |
+
):
|
197 |
+
return super().forward(x=hidden_states, mask=attention_mask.bool())
|
198 |
+
|
199 |
+
class Decoder(nn.Module):
|
200 |
+
def __init__(
|
201 |
+
self,
|
202 |
+
in_channels,
|
203 |
+
out_channels,
|
204 |
+
channels=(256, 256),
|
205 |
+
dropout=0.05,
|
206 |
+
attention_head_dim=64,
|
207 |
+
n_blocks=1,
|
208 |
+
num_mid_blocks=2,
|
209 |
+
num_heads=4,
|
210 |
+
act_fn="snake",
|
211 |
+
down_block_type="transformer",
|
212 |
+
mid_block_type="transformer",
|
213 |
+
up_block_type="transformer",
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
channels = tuple(channels)
|
217 |
+
self.in_channels = in_channels
|
218 |
+
self.out_channels = out_channels
|
219 |
+
|
220 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
221 |
+
time_embed_dim = channels[0] * 4
|
222 |
+
self.time_mlp = TimestepEmbedding(
|
223 |
+
in_channels=in_channels,
|
224 |
+
time_embed_dim=time_embed_dim,
|
225 |
+
act_fn="silu",
|
226 |
+
)
|
227 |
+
self.down_blocks = nn.ModuleList([])
|
228 |
+
self.mid_blocks = nn.ModuleList([])
|
229 |
+
self.up_blocks = nn.ModuleList([])
|
230 |
+
|
231 |
+
output_channel = in_channels
|
232 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
233 |
+
input_channel = output_channel
|
234 |
+
output_channel = channels[i]
|
235 |
+
is_last = i == len(channels) - 1
|
236 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
237 |
+
transformer_blocks = nn.ModuleList(
|
238 |
+
[
|
239 |
+
self.get_block(
|
240 |
+
down_block_type,
|
241 |
+
output_channel,
|
242 |
+
attention_head_dim,
|
243 |
+
num_heads,
|
244 |
+
dropout,
|
245 |
+
act_fn,
|
246 |
+
)
|
247 |
+
for _ in range(n_blocks)
|
248 |
+
]
|
249 |
+
)
|
250 |
+
downsample = (
|
251 |
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
252 |
+
)
|
253 |
+
|
254 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
255 |
+
|
256 |
+
for i in range(num_mid_blocks):
|
257 |
+
input_channel = channels[-1]
|
258 |
+
out_channels = channels[-1]
|
259 |
+
|
260 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
261 |
+
|
262 |
+
transformer_blocks = nn.ModuleList(
|
263 |
+
[
|
264 |
+
self.get_block(
|
265 |
+
mid_block_type,
|
266 |
+
output_channel,
|
267 |
+
attention_head_dim,
|
268 |
+
num_heads,
|
269 |
+
dropout,
|
270 |
+
act_fn,
|
271 |
+
)
|
272 |
+
for _ in range(n_blocks)
|
273 |
+
]
|
274 |
+
)
|
275 |
+
|
276 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
277 |
+
|
278 |
+
channels = channels[::-1] + (channels[0],)
|
279 |
+
for i in range(len(channels) - 1):
|
280 |
+
input_channel = channels[i]
|
281 |
+
output_channel = channels[i + 1]
|
282 |
+
is_last = i == len(channels) - 2
|
283 |
+
|
284 |
+
resnet = ResnetBlock1D(
|
285 |
+
dim=2 * input_channel,
|
286 |
+
dim_out=output_channel,
|
287 |
+
time_emb_dim=time_embed_dim,
|
288 |
+
)
|
289 |
+
transformer_blocks = nn.ModuleList(
|
290 |
+
[
|
291 |
+
self.get_block(
|
292 |
+
up_block_type,
|
293 |
+
output_channel,
|
294 |
+
attention_head_dim,
|
295 |
+
num_heads,
|
296 |
+
dropout,
|
297 |
+
act_fn,
|
298 |
+
)
|
299 |
+
for _ in range(n_blocks)
|
300 |
+
]
|
301 |
+
)
|
302 |
+
upsample = (
|
303 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
304 |
+
if not is_last
|
305 |
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
306 |
+
)
|
307 |
+
|
308 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
309 |
+
|
310 |
+
self.final_block = Block1D(channels[-1], channels[-1])
|
311 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
312 |
+
|
313 |
+
self.initialize_weights()
|
314 |
+
# nn.init.normal_(self.final_proj.weight)
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
|
320 |
+
if block_type == "conformer":
|
321 |
+
block = ConformerWrapper(
|
322 |
+
dim=dim,
|
323 |
+
dim_head=attention_head_dim,
|
324 |
+
heads=num_heads,
|
325 |
+
ff_mult=1,
|
326 |
+
conv_expansion_factor=2,
|
327 |
+
ff_dropout=dropout,
|
328 |
+
attn_dropout=dropout,
|
329 |
+
conv_dropout=dropout,
|
330 |
+
conv_kernel_size=31,
|
331 |
+
)
|
332 |
+
elif block_type == "transformer":
|
333 |
+
block = BasicTransformerBlock(
|
334 |
+
dim=dim,
|
335 |
+
num_attention_heads=num_heads,
|
336 |
+
attention_head_dim=attention_head_dim,
|
337 |
+
dropout=dropout,
|
338 |
+
activation_fn=act_fn,
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
raise ValueError(f"Unknown block type {block_type}")
|
342 |
+
|
343 |
+
return block
|
344 |
+
|
345 |
+
def initialize_weights(self):
|
346 |
+
for m in self.modules():
|
347 |
+
if isinstance(m, nn.Conv1d):
|
348 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
349 |
+
|
350 |
+
if m.bias is not None:
|
351 |
+
nn.init.constant_(m.bias, 0)
|
352 |
+
|
353 |
+
elif isinstance(m, nn.GroupNorm):
|
354 |
+
nn.init.constant_(m.weight, 1)
|
355 |
+
nn.init.constant_(m.bias, 0)
|
356 |
+
|
357 |
+
elif isinstance(m, nn.Linear):
|
358 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
359 |
+
|
360 |
+
if m.bias is not None:
|
361 |
+
nn.init.constant_(m.bias, 0)
|
362 |
+
|
363 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None, training=True):
|
364 |
+
"""Forward pass of the UNet1DConditional model.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
368 |
+
mask (_type_): shape (batch_size, 1, time)
|
369 |
+
t (_type_): shape (batch_size)
|
370 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
371 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
372 |
+
|
373 |
+
Raises:
|
374 |
+
ValueError: _description_
|
375 |
+
ValueError: _description_
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
_type_: _description_
|
379 |
+
"""
|
380 |
+
|
381 |
+
t = self.time_embeddings(t)
|
382 |
+
t = self.time_mlp(t)
|
383 |
+
|
384 |
+
x = pack([x, mu], "b * t")[0]
|
385 |
+
|
386 |
+
if spks is not None:
|
387 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
388 |
+
x = pack([x, spks], "b * t")[0]
|
389 |
+
|
390 |
+
hiddens = []
|
391 |
+
masks = [mask]
|
392 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
393 |
+
mask_down = masks[-1]
|
394 |
+
x = resnet(x, mask_down, t)
|
395 |
+
x = rearrange(x, "b c t -> b t c")
|
396 |
+
mask_down = rearrange(mask_down, "b 1 t -> b t")
|
397 |
+
for transformer_block in transformer_blocks:
|
398 |
+
x = transformer_block(
|
399 |
+
hidden_states=x,
|
400 |
+
attention_mask=mask_down,
|
401 |
+
timestep=t,
|
402 |
+
)
|
403 |
+
x = rearrange(x, "b t c -> b c t")
|
404 |
+
mask_down = rearrange(mask_down, "b t -> b 1 t")
|
405 |
+
hiddens.append(x) # Save hidden states for skip connections
|
406 |
+
x = downsample(x * mask_down)
|
407 |
+
masks.append(mask_down[:, :, ::2])
|
408 |
+
|
409 |
+
masks = masks[:-1]
|
410 |
+
mask_mid = masks[-1]
|
411 |
+
|
412 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
413 |
+
x = resnet(x, mask_mid, t)
|
414 |
+
x = rearrange(x, "b c t -> b t c")
|
415 |
+
mask_mid = rearrange(mask_mid, "b 1 t -> b t")
|
416 |
+
for transformer_block in transformer_blocks:
|
417 |
+
x = transformer_block(
|
418 |
+
hidden_states=x,
|
419 |
+
attention_mask=mask_mid,
|
420 |
+
timestep=t,
|
421 |
+
)
|
422 |
+
x = rearrange(x, "b t c -> b c t")
|
423 |
+
mask_mid = rearrange(mask_mid, "b t -> b 1 t")
|
424 |
+
|
425 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
426 |
+
mask_up = masks.pop()
|
427 |
+
x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
|
428 |
+
x = rearrange(x, "b c t -> b t c")
|
429 |
+
mask_up = rearrange(mask_up, "b 1 t -> b t")
|
430 |
+
for transformer_block in transformer_blocks:
|
431 |
+
x = transformer_block(
|
432 |
+
hidden_states=x,
|
433 |
+
attention_mask=mask_up,
|
434 |
+
timestep=t,
|
435 |
+
)
|
436 |
+
x = rearrange(x, "b t c -> b c t")
|
437 |
+
mask_up = rearrange(mask_up, "b t -> b 1 t")
|
438 |
+
x = upsample(x * mask_up)
|
439 |
+
|
440 |
+
x = self.final_block(x, mask_up)
|
441 |
+
output = self.final_proj(x * mask_up)
|
442 |
+
output = output * mask
|
443 |
+
|
444 |
+
return output * mask
|
pflow/models/components/flow_matching.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from pflow.models.components.decoder import Decoder
|
7 |
+
from pflow.models.components.wn_pflow_decoder import DiffSingerNet
|
8 |
+
from pflow.models.components.vits_wn_decoder import VitsWNDecoder
|
9 |
+
|
10 |
+
from pflow.utils.pylogger import get_pylogger
|
11 |
+
|
12 |
+
log = get_pylogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class BASECFM(torch.nn.Module, ABC):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
n_feats,
|
19 |
+
cfm_params,
|
20 |
+
n_spks=1,
|
21 |
+
spk_emb_dim=128,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.n_feats = n_feats
|
25 |
+
self.n_spks = n_spks
|
26 |
+
self.spk_emb_dim = spk_emb_dim
|
27 |
+
self.solver = cfm_params.solver
|
28 |
+
if hasattr(cfm_params, "sigma_min"):
|
29 |
+
self.sigma_min = cfm_params.sigma_min
|
30 |
+
else:
|
31 |
+
self.sigma_min = 1e-4
|
32 |
+
|
33 |
+
self.estimator = None
|
34 |
+
|
35 |
+
@torch.inference_mode()
|
36 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, cond=None, training=False, guidance_scale=0.0):
|
37 |
+
"""Forward diffusion
|
38 |
+
|
39 |
+
Args:
|
40 |
+
mu (torch.Tensor): output of encoder
|
41 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
42 |
+
mask (torch.Tensor): output_mask
|
43 |
+
shape: (batch_size, 1, mel_timesteps)
|
44 |
+
n_timesteps (int): number of diffusion steps
|
45 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
46 |
+
cond: Not used but kept for future purposes
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
sample: generated mel-spectrogram
|
50 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
51 |
+
"""
|
52 |
+
z = torch.randn_like(mu) * temperature
|
53 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
54 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, cond=cond, training=training, guidance_scale=guidance_scale)
|
55 |
+
|
56 |
+
def solve_euler(self, x, t_span, mu, mask, cond, training=False, guidance_scale=0.0):
|
57 |
+
"""
|
58 |
+
Fixed euler solver for ODEs.
|
59 |
+
Args:
|
60 |
+
x (torch.Tensor): random noise
|
61 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
62 |
+
shape: (n_timesteps + 1,)
|
63 |
+
mu (torch.Tensor): output of encoder
|
64 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
65 |
+
mask (torch.Tensor): output_mask
|
66 |
+
shape: (batch_size, 1, mel_timesteps)
|
67 |
+
cond: Not used but kept for future purposes
|
68 |
+
"""
|
69 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
70 |
+
|
71 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
72 |
+
# Or in future might add like a return_all_steps flag
|
73 |
+
sol = []
|
74 |
+
steps = 1
|
75 |
+
while steps <= len(t_span) - 1:
|
76 |
+
dphi_dt = self.estimator(x, mask, mu, t, cond, training=training)
|
77 |
+
if guidance_scale > 0.0:
|
78 |
+
mu_avg = mu.mean(2, keepdims=True).expand_as(mu)
|
79 |
+
dphi_avg = self.estimator(x, mask, mu_avg, t, cond, training=training)
|
80 |
+
dphi_dt = dphi_dt + guidance_scale * (dphi_dt - dphi_avg)
|
81 |
+
|
82 |
+
x = x + dt * dphi_dt
|
83 |
+
t = t + dt
|
84 |
+
sol.append(x)
|
85 |
+
if steps < len(t_span) - 1:
|
86 |
+
dt = t_span[steps + 1] - t
|
87 |
+
steps += 1
|
88 |
+
|
89 |
+
return sol[-1]
|
90 |
+
|
91 |
+
def compute_loss(self, x1, mask, mu, cond=None, training=True, loss_mask=None):
|
92 |
+
"""Computes diffusion loss
|
93 |
+
|
94 |
+
Args:
|
95 |
+
x1 (torch.Tensor): Target
|
96 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
97 |
+
mask (torch.Tensor): target mask
|
98 |
+
shape: (batch_size, 1, mel_timesteps)
|
99 |
+
mu (torch.Tensor): output of encoder
|
100 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
101 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
102 |
+
shape: (batch_size, spk_emb_dim)
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
loss: conditional flow matching loss
|
106 |
+
y: conditional flow
|
107 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
108 |
+
"""
|
109 |
+
b, _, t = mu.shape
|
110 |
+
|
111 |
+
# random timestep
|
112 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
113 |
+
# sample noise p(x_0)
|
114 |
+
z = torch.randn_like(x1)
|
115 |
+
|
116 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
117 |
+
u = x1 - (1 - self.sigma_min) * z
|
118 |
+
# y = u * t + z
|
119 |
+
estimator_out = self.estimator(y, mask, mu, t.squeeze(), training=training)
|
120 |
+
|
121 |
+
if loss_mask is not None:
|
122 |
+
mask = loss_mask
|
123 |
+
loss = F.mse_loss(estimator_out*mask, u*mask, reduction="sum") / (
|
124 |
+
torch.sum(mask) * u.shape[1]
|
125 |
+
)
|
126 |
+
return loss, y
|
127 |
+
|
128 |
+
|
129 |
+
class CFM(BASECFM):
|
130 |
+
def __init__(self, in_channels, out_channel, cfm_params, decoder_params):
|
131 |
+
super().__init__(
|
132 |
+
n_feats=in_channels,
|
133 |
+
cfm_params=cfm_params,
|
134 |
+
)
|
135 |
+
|
136 |
+
# Just change the architecture of the estimator here
|
137 |
+
self.estimator = Decoder(in_channels=in_channels*2, out_channels=out_channel, **decoder_params)
|
138 |
+
# self.estimator = DiffSingerNet(in_dims=in_channels, encoder_hidden=out_channel)
|
139 |
+
# self.estimator = VitsWNDecoder(
|
140 |
+
# in_channels=in_channels,
|
141 |
+
# out_channels=out_channel,
|
142 |
+
# hidden_channels=out_channel,
|
143 |
+
# kernel_size=3,
|
144 |
+
# dilation_rate=1,
|
145 |
+
# n_layers=18,
|
146 |
+
# gin_channels=out_channel*2
|
147 |
+
# )
|
148 |
+
|
pflow/models/components/speech_prompt_encoder.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
import pflow.utils as utils
|
10 |
+
from pflow.utils.model import sequence_mask
|
11 |
+
from pflow.models.components import commons
|
12 |
+
from pflow.models.components.vits_posterior import PosteriorEncoder
|
13 |
+
from pflow.models.components.transformer import BasicTransformerBlock
|
14 |
+
|
15 |
+
log = utils.get_pylogger(__name__)
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-4):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = torch.nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = torch.nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
n_dims = len(x.shape)
|
28 |
+
mean = torch.mean(x, 1, keepdim=True)
|
29 |
+
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
|
30 |
+
|
31 |
+
x = (x - mean) * torch.rsqrt(variance + self.eps)
|
32 |
+
|
33 |
+
shape = [1, -1] + [1] * (n_dims - 2)
|
34 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
35 |
+
return x
|
36 |
+
|
37 |
+
|
38 |
+
class ConvReluNorm(nn.Module):
|
39 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
40 |
+
super().__init__()
|
41 |
+
self.in_channels = in_channels
|
42 |
+
self.hidden_channels = hidden_channels
|
43 |
+
self.out_channels = out_channels
|
44 |
+
self.kernel_size = kernel_size
|
45 |
+
self.n_layers = n_layers
|
46 |
+
self.p_dropout = p_dropout
|
47 |
+
|
48 |
+
self.conv_layers = torch.nn.ModuleList()
|
49 |
+
self.norm_layers = torch.nn.ModuleList()
|
50 |
+
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
51 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
52 |
+
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers - 1):
|
54 |
+
self.conv_layers.append(
|
55 |
+
torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
|
56 |
+
)
|
57 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
58 |
+
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
|
59 |
+
self.proj.weight.data.zero_()
|
60 |
+
self.proj.bias.data.zero_()
|
61 |
+
|
62 |
+
def forward(self, x, x_mask):
|
63 |
+
x_org = x
|
64 |
+
for i in range(self.n_layers):
|
65 |
+
x = self.conv_layers[i](x * x_mask)
|
66 |
+
x = self.norm_layers[i](x)
|
67 |
+
x = self.relu_drop(x)
|
68 |
+
x = x_org + self.proj(x)
|
69 |
+
return x * x_mask
|
70 |
+
|
71 |
+
|
72 |
+
class DurationPredictor(nn.Module):
|
73 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
74 |
+
super().__init__()
|
75 |
+
self.in_channels = in_channels
|
76 |
+
self.filter_channels = filter_channels
|
77 |
+
self.p_dropout = p_dropout
|
78 |
+
|
79 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
80 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
81 |
+
self.norm_1 = LayerNorm(filter_channels)
|
82 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
83 |
+
self.norm_2 = LayerNorm(filter_channels)
|
84 |
+
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
85 |
+
|
86 |
+
def forward(self, x, x_mask):
|
87 |
+
x = self.conv_1(x * x_mask)
|
88 |
+
x = torch.relu(x)
|
89 |
+
x = self.norm_1(x)
|
90 |
+
x = self.drop(x)
|
91 |
+
x = self.conv_2(x * x_mask)
|
92 |
+
x = torch.relu(x)
|
93 |
+
x = self.norm_2(x)
|
94 |
+
x = self.drop(x)
|
95 |
+
x = self.proj(x * x_mask)
|
96 |
+
# x = torch.relu(x)
|
97 |
+
return x * x_mask
|
98 |
+
|
99 |
+
class DurationPredictorNS2(nn.Module):
|
100 |
+
def __init__(
|
101 |
+
self, in_channels, filter_channels, kernel_size, p_dropout=0.5
|
102 |
+
):
|
103 |
+
super().__init__()
|
104 |
+
|
105 |
+
self.in_channels = in_channels
|
106 |
+
self.filter_channels = filter_channels
|
107 |
+
self.kernel_size = kernel_size
|
108 |
+
self.p_dropout = p_dropout
|
109 |
+
|
110 |
+
self.drop = nn.Dropout(p_dropout)
|
111 |
+
self.conv_1 = nn.Conv1d(
|
112 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
113 |
+
)
|
114 |
+
self.norm_1 = LayerNorm(filter_channels)
|
115 |
+
|
116 |
+
self.module_list = nn.ModuleList()
|
117 |
+
self.module_list.append(self.conv_1)
|
118 |
+
self.module_list.append(nn.ReLU())
|
119 |
+
self.module_list.append(self.norm_1)
|
120 |
+
self.module_list.append(self.drop)
|
121 |
+
|
122 |
+
for i in range(12):
|
123 |
+
self.module_list.append(nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2))
|
124 |
+
self.module_list.append(nn.ReLU())
|
125 |
+
self.module_list.append(LayerNorm(filter_channels))
|
126 |
+
self.module_list.append(nn.Dropout(p_dropout))
|
127 |
+
|
128 |
+
|
129 |
+
# attention layer every 3 layers
|
130 |
+
self.attn_list = nn.ModuleList()
|
131 |
+
for i in range(4):
|
132 |
+
self.attn_list.append(
|
133 |
+
Encoder(
|
134 |
+
filter_channels,
|
135 |
+
filter_channels,
|
136 |
+
8,
|
137 |
+
10,
|
138 |
+
3,
|
139 |
+
p_dropout=p_dropout,
|
140 |
+
)
|
141 |
+
)
|
142 |
+
|
143 |
+
for i in range(30):
|
144 |
+
if i+1 % 3 == 0:
|
145 |
+
self.module_list.append(self.attn_list[i//3])
|
146 |
+
|
147 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
148 |
+
|
149 |
+
def forward(self, x, x_mask):
|
150 |
+
x = torch.detach(x)
|
151 |
+
for layer in self.module_list:
|
152 |
+
x = layer(x * x_mask)
|
153 |
+
x = self.proj(x * x_mask)
|
154 |
+
# x = torch.relu(x)
|
155 |
+
return x * x_mask
|
156 |
+
|
157 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
158 |
+
"""
|
159 |
+
## RoPE module
|
160 |
+
|
161 |
+
Rotary encoding transforms pairs of features by rotating in the 2D plane.
|
162 |
+
That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
|
163 |
+
Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
|
164 |
+
by an angle depending on the position of the token.
|
165 |
+
"""
|
166 |
+
|
167 |
+
def __init__(self, d: int, base: int = 10_000):
|
168 |
+
r"""
|
169 |
+
* `d` is the number of features $d$
|
170 |
+
* `base` is the constant used for calculating $\Theta$
|
171 |
+
"""
|
172 |
+
super().__init__()
|
173 |
+
|
174 |
+
self.base = base
|
175 |
+
self.d = int(d)
|
176 |
+
self.cos_cached = None
|
177 |
+
self.sin_cached = None
|
178 |
+
|
179 |
+
def _build_cache(self, x: torch.Tensor):
|
180 |
+
r"""
|
181 |
+
Cache $\cos$ and $\sin$ values
|
182 |
+
"""
|
183 |
+
# Return if cache is already built
|
184 |
+
if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
|
185 |
+
return
|
186 |
+
|
187 |
+
# Get sequence length
|
188 |
+
seq_len = x.shape[0]
|
189 |
+
|
190 |
+
# $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
191 |
+
theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
|
192 |
+
|
193 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
194 |
+
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
|
195 |
+
|
196 |
+
# Calculate the product of position index and $\theta_i$
|
197 |
+
idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
|
198 |
+
|
199 |
+
# Concatenate so that for row $m$ we have
|
200 |
+
# $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
|
201 |
+
idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
|
202 |
+
|
203 |
+
# Cache them
|
204 |
+
self.cos_cached = idx_theta2.cos()[:, None, None, :]
|
205 |
+
self.sin_cached = idx_theta2.sin()[:, None, None, :]
|
206 |
+
|
207 |
+
def _neg_half(self, x: torch.Tensor):
|
208 |
+
# $\frac{d}{2}$
|
209 |
+
d_2 = self.d // 2
|
210 |
+
|
211 |
+
# Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
212 |
+
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
|
213 |
+
|
214 |
+
def forward(self, x: torch.Tensor):
|
215 |
+
"""
|
216 |
+
* `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
|
217 |
+
"""
|
218 |
+
# Cache $\cos$ and $\sin$ values
|
219 |
+
x = rearrange(x, "b h t d -> t b h d")
|
220 |
+
|
221 |
+
self._build_cache(x)
|
222 |
+
|
223 |
+
# Split the features, we can choose to apply rotary embeddings only to a partial set of features.
|
224 |
+
x_rope, x_pass = x[..., : self.d], x[..., self.d :]
|
225 |
+
|
226 |
+
# Calculate
|
227 |
+
# $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
228 |
+
neg_half_x = self._neg_half(x_rope)
|
229 |
+
|
230 |
+
x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
|
231 |
+
|
232 |
+
return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
|
233 |
+
|
234 |
+
|
235 |
+
class MultiHeadAttention(nn.Module):
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
channels,
|
239 |
+
out_channels,
|
240 |
+
n_heads,
|
241 |
+
heads_share=True,
|
242 |
+
p_dropout=0.0,
|
243 |
+
proximal_bias=False,
|
244 |
+
proximal_init=False,
|
245 |
+
):
|
246 |
+
super().__init__()
|
247 |
+
assert channels % n_heads == 0
|
248 |
+
|
249 |
+
self.channels = channels
|
250 |
+
self.out_channels = out_channels
|
251 |
+
self.n_heads = n_heads
|
252 |
+
self.heads_share = heads_share
|
253 |
+
self.proximal_bias = proximal_bias
|
254 |
+
self.p_dropout = p_dropout
|
255 |
+
self.attn = None
|
256 |
+
|
257 |
+
self.k_channels = channels // n_heads
|
258 |
+
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
259 |
+
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
260 |
+
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
261 |
+
|
262 |
+
# from https://nn.labml.ai/transformers/rope/index.html
|
263 |
+
self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
264 |
+
self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
265 |
+
|
266 |
+
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
267 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
268 |
+
|
269 |
+
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
270 |
+
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
271 |
+
if proximal_init:
|
272 |
+
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
273 |
+
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
274 |
+
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
275 |
+
|
276 |
+
def forward(self, x, c, attn_mask=None):
|
277 |
+
q = self.conv_q(x)
|
278 |
+
k = self.conv_k(c)
|
279 |
+
v = self.conv_v(c)
|
280 |
+
|
281 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
282 |
+
|
283 |
+
x = self.conv_o(x)
|
284 |
+
return x
|
285 |
+
|
286 |
+
def attention(self, query, key, value, mask=None):
|
287 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
288 |
+
query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
|
289 |
+
key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
|
290 |
+
value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
|
291 |
+
|
292 |
+
query = self.query_rotary_pe(query)
|
293 |
+
key = self.key_rotary_pe(key)
|
294 |
+
|
295 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
296 |
+
|
297 |
+
if self.proximal_bias:
|
298 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
299 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
300 |
+
if mask is not None:
|
301 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
302 |
+
p_attn = torch.nn.functional.softmax(scores, dim=-1)
|
303 |
+
p_attn = self.drop(p_attn)
|
304 |
+
output = torch.matmul(p_attn, value)
|
305 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
306 |
+
return output, p_attn
|
307 |
+
|
308 |
+
@staticmethod
|
309 |
+
def _attention_bias_proximal(length):
|
310 |
+
r = torch.arange(length, dtype=torch.float32)
|
311 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
312 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
313 |
+
|
314 |
+
|
315 |
+
class FFN(nn.Module):
|
316 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
|
317 |
+
super().__init__()
|
318 |
+
self.in_channels = in_channels
|
319 |
+
self.out_channels = out_channels
|
320 |
+
self.filter_channels = filter_channels
|
321 |
+
self.kernel_size = kernel_size
|
322 |
+
self.p_dropout = p_dropout
|
323 |
+
|
324 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
325 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
|
326 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
327 |
+
|
328 |
+
def forward(self, x, x_mask):
|
329 |
+
x = self.conv_1(x * x_mask)
|
330 |
+
x = torch.relu(x)
|
331 |
+
x = self.drop(x)
|
332 |
+
x = self.conv_2(x * x_mask)
|
333 |
+
return x * x_mask
|
334 |
+
|
335 |
+
|
336 |
+
class Encoder(nn.Module):
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
hidden_channels,
|
340 |
+
filter_channels,
|
341 |
+
n_heads,
|
342 |
+
n_layers,
|
343 |
+
kernel_size=1,
|
344 |
+
p_dropout=0.0,
|
345 |
+
**kwargs,
|
346 |
+
):
|
347 |
+
super().__init__()
|
348 |
+
self.hidden_channels = hidden_channels
|
349 |
+
self.filter_channels = filter_channels
|
350 |
+
self.n_heads = n_heads
|
351 |
+
self.n_layers = n_layers
|
352 |
+
self.kernel_size = kernel_size
|
353 |
+
self.p_dropout = p_dropout
|
354 |
+
|
355 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
356 |
+
self.attn_layers = torch.nn.ModuleList()
|
357 |
+
self.norm_layers_1 = torch.nn.ModuleList()
|
358 |
+
self.ffn_layers = torch.nn.ModuleList()
|
359 |
+
self.norm_layers_2 = torch.nn.ModuleList()
|
360 |
+
for _ in range(self.n_layers):
|
361 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
362 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
363 |
+
self.ffn_layers.append(
|
364 |
+
FFN(
|
365 |
+
hidden_channels,
|
366 |
+
hidden_channels,
|
367 |
+
filter_channels,
|
368 |
+
kernel_size,
|
369 |
+
p_dropout=p_dropout,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
373 |
+
|
374 |
+
def forward(self, x, x_mask):
|
375 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
376 |
+
for i in range(self.n_layers):
|
377 |
+
x = x * x_mask
|
378 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
379 |
+
y = self.drop(y)
|
380 |
+
x = self.norm_layers_1[i](x + y)
|
381 |
+
y = self.ffn_layers[i](x, x_mask)
|
382 |
+
y = self.drop(y)
|
383 |
+
x = self.norm_layers_2[i](x + y)
|
384 |
+
x = x * x_mask
|
385 |
+
return x
|
386 |
+
|
387 |
+
class Decoder(nn.Module):
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
hidden_channels,
|
391 |
+
filter_channels,
|
392 |
+
n_heads,
|
393 |
+
n_layers,
|
394 |
+
kernel_size=1,
|
395 |
+
p_dropout=0.0,
|
396 |
+
proximal_bias=False,
|
397 |
+
proximal_init=True,
|
398 |
+
**kwargs
|
399 |
+
):
|
400 |
+
super().__init__()
|
401 |
+
self.hidden_channels = hidden_channels
|
402 |
+
self.filter_channels = filter_channels
|
403 |
+
self.n_heads = n_heads
|
404 |
+
self.n_layers = n_layers
|
405 |
+
self.kernel_size = kernel_size
|
406 |
+
self.p_dropout = p_dropout
|
407 |
+
self.proximal_bias = proximal_bias
|
408 |
+
self.proximal_init = proximal_init
|
409 |
+
|
410 |
+
self.drop = nn.Dropout(p_dropout)
|
411 |
+
self.self_attn_layers = nn.ModuleList()
|
412 |
+
self.norm_layers_0 = nn.ModuleList()
|
413 |
+
self.encdec_attn_layers = nn.ModuleList()
|
414 |
+
self.norm_layers_1 = nn.ModuleList()
|
415 |
+
self.ffn_layers = nn.ModuleList()
|
416 |
+
self.norm_layers_2 = nn.ModuleList()
|
417 |
+
for i in range(self.n_layers):
|
418 |
+
self.self_attn_layers.append(
|
419 |
+
MultiHeadAttention(
|
420 |
+
hidden_channels,
|
421 |
+
hidden_channels,
|
422 |
+
n_heads,
|
423 |
+
p_dropout=p_dropout
|
424 |
+
)
|
425 |
+
)
|
426 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
427 |
+
self.encdec_attn_layers.append(
|
428 |
+
MultiHeadAttention(
|
429 |
+
hidden_channels,
|
430 |
+
hidden_channels,
|
431 |
+
n_heads,
|
432 |
+
p_dropout=p_dropout
|
433 |
+
)
|
434 |
+
)
|
435 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
436 |
+
self.ffn_layers.append(
|
437 |
+
FFN(
|
438 |
+
hidden_channels,
|
439 |
+
hidden_channels,
|
440 |
+
filter_channels,
|
441 |
+
kernel_size,
|
442 |
+
p_dropout=p_dropout,
|
443 |
+
)
|
444 |
+
)
|
445 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
446 |
+
|
447 |
+
def forward(self, x, x_mask, h, h_mask):
|
448 |
+
"""
|
449 |
+
x: decoder input
|
450 |
+
h: encoder output
|
451 |
+
"""
|
452 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
453 |
+
device=x.device, dtype=x.dtype
|
454 |
+
)
|
455 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
456 |
+
x = x * x_mask
|
457 |
+
for i in range(self.n_layers):
|
458 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
459 |
+
y = self.drop(y)
|
460 |
+
x = self.norm_layers_0[i](x + y)
|
461 |
+
|
462 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
463 |
+
y = self.drop(y)
|
464 |
+
x = self.norm_layers_1[i](x + y)
|
465 |
+
|
466 |
+
y = self.ffn_layers[i](x, x_mask)
|
467 |
+
y = self.drop(y)
|
468 |
+
x = self.norm_layers_2[i](x + y)
|
469 |
+
x = x * x_mask
|
470 |
+
return x
|
471 |
+
|
472 |
+
class TextEncoder(nn.Module):
|
473 |
+
def __init__(
|
474 |
+
self,
|
475 |
+
encoder_type,
|
476 |
+
encoder_params,
|
477 |
+
duration_predictor_params,
|
478 |
+
n_vocab,
|
479 |
+
speech_in_channels,
|
480 |
+
):
|
481 |
+
super().__init__()
|
482 |
+
self.encoder_type = encoder_type
|
483 |
+
self.n_vocab = n_vocab
|
484 |
+
self.n_feats = encoder_params.n_feats
|
485 |
+
self.n_channels = encoder_params.n_channels
|
486 |
+
|
487 |
+
self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
|
488 |
+
torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
|
489 |
+
|
490 |
+
self.speech_in_channels = speech_in_channels
|
491 |
+
self.speech_out_channels = self.n_channels
|
492 |
+
self.speech_prompt_proj = torch.nn.Conv1d(self.speech_in_channels, self.speech_out_channels, 1)
|
493 |
+
# self.speech_prompt_proj = PosteriorEncoder(
|
494 |
+
# self.speech_in_channels,
|
495 |
+
# self.speech_out_channels,
|
496 |
+
# self.speech_out_channels,
|
497 |
+
# 1,
|
498 |
+
# 1,
|
499 |
+
# 1,
|
500 |
+
# gin_channels=0,
|
501 |
+
# )
|
502 |
+
|
503 |
+
self.prenet = ConvReluNorm(
|
504 |
+
self.n_channels,
|
505 |
+
self.n_channels,
|
506 |
+
self.n_channels,
|
507 |
+
kernel_size=5,
|
508 |
+
n_layers=3,
|
509 |
+
p_dropout=0,
|
510 |
+
)
|
511 |
+
|
512 |
+
self.speech_prompt_encoder = Encoder(
|
513 |
+
encoder_params.n_channels,
|
514 |
+
encoder_params.filter_channels,
|
515 |
+
encoder_params.n_heads,
|
516 |
+
encoder_params.n_layers,
|
517 |
+
encoder_params.kernel_size,
|
518 |
+
encoder_params.p_dropout,
|
519 |
+
)
|
520 |
+
|
521 |
+
self.text_base_encoder = Encoder(
|
522 |
+
encoder_params.n_channels,
|
523 |
+
encoder_params.filter_channels,
|
524 |
+
encoder_params.n_heads,
|
525 |
+
encoder_params.n_layers,
|
526 |
+
encoder_params.kernel_size,
|
527 |
+
encoder_params.p_dropout,
|
528 |
+
)
|
529 |
+
|
530 |
+
self.decoder = Decoder(
|
531 |
+
encoder_params.n_channels,
|
532 |
+
encoder_params.filter_channels,
|
533 |
+
encoder_params.n_heads,
|
534 |
+
encoder_params.n_layers,
|
535 |
+
encoder_params.kernel_size,
|
536 |
+
encoder_params.p_dropout,
|
537 |
+
)
|
538 |
+
|
539 |
+
self.transformerblock = BasicTransformerBlock(
|
540 |
+
encoder_params.n_channels,
|
541 |
+
encoder_params.n_heads,
|
542 |
+
encoder_params.n_channels // encoder_params.n_heads,
|
543 |
+
encoder_params.p_dropout,
|
544 |
+
encoder_params.n_channels,
|
545 |
+
activation_fn="gelu",
|
546 |
+
attention_bias=False,
|
547 |
+
only_cross_attention=False,
|
548 |
+
double_self_attention=False,
|
549 |
+
upcast_attention=False,
|
550 |
+
norm_elementwise_affine=True,
|
551 |
+
norm_type="layer_norm",
|
552 |
+
final_dropout=False,
|
553 |
+
)
|
554 |
+
self.proj_m = torch.nn.Conv1d(self.n_channels, self.n_feats, 1)
|
555 |
+
|
556 |
+
self.proj_w = DurationPredictor(
|
557 |
+
self.n_channels,
|
558 |
+
duration_predictor_params.filter_channels_dp,
|
559 |
+
duration_predictor_params.kernel_size,
|
560 |
+
duration_predictor_params.p_dropout,
|
561 |
+
)
|
562 |
+
# self.proj_w = DurationPredictorNS2(
|
563 |
+
# self.n_channels,
|
564 |
+
# duration_predictor_params.filter_channels_dp,
|
565 |
+
# duration_predictor_params.kernel_size,
|
566 |
+
# duration_predictor_params.p_dropout,
|
567 |
+
# )
|
568 |
+
|
569 |
+
# self.speech_prompt_pos_emb = RotaryPositionalEmbeddings(self.n_channels * 0.5)
|
570 |
+
# self.text_pos_emb = RotaryPositionalEmbeddings(self.n_channels * 0.5)
|
571 |
+
|
572 |
+
def forward(
|
573 |
+
self,
|
574 |
+
x_input,
|
575 |
+
x_lengths,
|
576 |
+
speech_prompt,
|
577 |
+
):
|
578 |
+
"""Run forward pass to the transformer based encoder and duration predictor
|
579 |
+
|
580 |
+
Args:
|
581 |
+
x (torch.Tensor): text input
|
582 |
+
shape: (batch_size, max_text_length)
|
583 |
+
x_lengths (torch.Tensor): text input lengths
|
584 |
+
shape: (batch_size,)
|
585 |
+
speech_prompt (torch.Tensor): speech prompt input
|
586 |
+
|
587 |
+
Returns:
|
588 |
+
mu (torch.Tensor): average output of the encoder
|
589 |
+
shape: (batch_size, n_feats, max_text_length)
|
590 |
+
logw (torch.Tensor): log duration predicted by the duration predictor
|
591 |
+
shape: (batch_size, 1, max_text_length)
|
592 |
+
x_mask (torch.Tensor): mask for the text input
|
593 |
+
shape: (batch_size, 1, max_text_length)
|
594 |
+
"""
|
595 |
+
|
596 |
+
x_emb = self.emb(x_input) * math.sqrt(self.n_channels)
|
597 |
+
x_emb = torch.transpose(x_emb, 1, -1)
|
598 |
+
x_emb_mask = torch.unsqueeze(sequence_mask(x_lengths, x_emb.size(2)), 1).to(x_emb.dtype)
|
599 |
+
x_emb = self.text_base_encoder(x_emb, x_emb_mask)
|
600 |
+
|
601 |
+
x_speech_lengths = x_lengths + speech_prompt.size(2)
|
602 |
+
speech_lengths = x_speech_lengths - x_lengths
|
603 |
+
speech_mask = torch.unsqueeze(sequence_mask(speech_lengths, speech_prompt.size(2)), 1).to(x_emb.dtype)
|
604 |
+
|
605 |
+
speech_prompt_proj = self.speech_prompt_proj(speech_prompt)
|
606 |
+
# speech_prompt_proj, speech_mask = self.speech_prompt_proj(speech_prompt, speech_lengths)
|
607 |
+
# speech_prompt_proj = self.speech_prompt_encoder(speech_prompt_proj, speech_mask)
|
608 |
+
|
609 |
+
x_speech_cat = torch.cat([speech_prompt_proj, x_emb], dim=2)
|
610 |
+
x_speech_mask = torch.unsqueeze(sequence_mask(x_speech_lengths, x_speech_cat.size(2)), 1).to(x_speech_cat.dtype)
|
611 |
+
|
612 |
+
x_prenet = self.prenet(x_speech_cat, x_speech_mask)
|
613 |
+
# split speech prompt and text input
|
614 |
+
speech_prompt_proj = x_prenet[:, :, :speech_prompt_proj.size(2)]
|
615 |
+
x_split = x_prenet[:, :, speech_prompt_proj.size(2):]
|
616 |
+
|
617 |
+
# add positional encoding to speech prompt and x_split
|
618 |
+
# x_split = self.text_pos_emb(x_split.unsqueeze(1).transpose(-2,-1)).squeeze(1).transpose(-2,-1)
|
619 |
+
x_split_mask = torch.unsqueeze(sequence_mask(x_lengths, x_split.size(2)), 1).to(x_split.dtype)
|
620 |
+
|
621 |
+
# speech_prompt = self.speech_prompt_pos_emb(speech_prompt_proj.unsqueeze(1).transpose(-2,-1)).squeeze(1).transpose(-2,-1)
|
622 |
+
# x_split = self.decoder(x_split, x_split_mask, speech_prompt, speech_mask)
|
623 |
+
|
624 |
+
x_split = self.transformerblock(x_split.transpose(1,2), x_split_mask, speech_prompt_proj.transpose(1,2), speech_mask)
|
625 |
+
x_split = x_split.transpose(1,2)
|
626 |
+
|
627 |
+
# x_split_mask = torch.unsqueeze(sequence_mask(x_lengths, x_split.size(2)), 1).to(x.dtype)
|
628 |
+
|
629 |
+
# x_split = x_split + x_emb
|
630 |
+
|
631 |
+
mu = self.proj_m(x_split) * x_split_mask
|
632 |
+
|
633 |
+
x_dp = torch.detach(x_split)
|
634 |
+
logw = self.proj_w(x_dp, x_split_mask)
|
635 |
+
|
636 |
+
return mu, logw, x_split_mask
|
pflow/models/components/speech_prompt_encoder_v0.py
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
import pflow.utils as utils
|
10 |
+
from pflow.utils.model import sequence_mask
|
11 |
+
from pflow.models.components import commons
|
12 |
+
from pflow.models.components.vits_posterior import PosteriorEncoder
|
13 |
+
from pflow.models.components.transformer import BasicTransformerBlock
|
14 |
+
|
15 |
+
log = utils.get_pylogger(__name__)
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-4):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = torch.nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = torch.nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
n_dims = len(x.shape)
|
28 |
+
mean = torch.mean(x, 1, keepdim=True)
|
29 |
+
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
|
30 |
+
|
31 |
+
x = (x - mean) * torch.rsqrt(variance + self.eps)
|
32 |
+
|
33 |
+
shape = [1, -1] + [1] * (n_dims - 2)
|
34 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
35 |
+
return x
|
36 |
+
|
37 |
+
|
38 |
+
class ConvReluNorm(nn.Module):
|
39 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
40 |
+
super().__init__()
|
41 |
+
self.in_channels = in_channels
|
42 |
+
self.hidden_channels = hidden_channels
|
43 |
+
self.out_channels = out_channels
|
44 |
+
self.kernel_size = kernel_size
|
45 |
+
self.n_layers = n_layers
|
46 |
+
self.p_dropout = p_dropout
|
47 |
+
|
48 |
+
self.conv_layers = torch.nn.ModuleList()
|
49 |
+
self.norm_layers = torch.nn.ModuleList()
|
50 |
+
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
51 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
52 |
+
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers - 1):
|
54 |
+
self.conv_layers.append(
|
55 |
+
torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
|
56 |
+
)
|
57 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
58 |
+
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
|
59 |
+
self.proj.weight.data.zero_()
|
60 |
+
self.proj.bias.data.zero_()
|
61 |
+
|
62 |
+
def forward(self, x, x_mask):
|
63 |
+
x_org = x
|
64 |
+
for i in range(self.n_layers):
|
65 |
+
x = self.conv_layers[i](x * x_mask)
|
66 |
+
x = self.norm_layers[i](x)
|
67 |
+
x = self.relu_drop(x)
|
68 |
+
x = x_org + self.proj(x)
|
69 |
+
return x * x_mask
|
70 |
+
|
71 |
+
|
72 |
+
class DurationPredictor(nn.Module):
|
73 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
74 |
+
super().__init__()
|
75 |
+
self.in_channels = in_channels
|
76 |
+
self.filter_channels = filter_channels
|
77 |
+
self.p_dropout = p_dropout
|
78 |
+
|
79 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
80 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
81 |
+
self.norm_1 = LayerNorm(filter_channels)
|
82 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
83 |
+
self.norm_2 = LayerNorm(filter_channels)
|
84 |
+
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
85 |
+
|
86 |
+
def forward(self, x, x_mask):
|
87 |
+
x = self.conv_1(x * x_mask)
|
88 |
+
x = torch.relu(x)
|
89 |
+
x = self.norm_1(x)
|
90 |
+
x = self.drop(x)
|
91 |
+
x = self.conv_2(x * x_mask)
|
92 |
+
x = torch.relu(x)
|
93 |
+
x = self.norm_2(x)
|
94 |
+
x = self.drop(x)
|
95 |
+
x = self.proj(x * x_mask)
|
96 |
+
# x = torch.relu(x)
|
97 |
+
return x * x_mask
|
98 |
+
|
99 |
+
class DurationPredictorNS2(nn.Module):
|
100 |
+
def __init__(
|
101 |
+
self, in_channels, filter_channels, kernel_size, p_dropout=0.5
|
102 |
+
):
|
103 |
+
super().__init__()
|
104 |
+
|
105 |
+
self.in_channels = in_channels
|
106 |
+
self.filter_channels = filter_channels
|
107 |
+
self.kernel_size = kernel_size
|
108 |
+
self.p_dropout = p_dropout
|
109 |
+
|
110 |
+
self.drop = nn.Dropout(p_dropout)
|
111 |
+
self.conv_1 = nn.Conv1d(
|
112 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
113 |
+
)
|
114 |
+
self.norm_1 = LayerNorm(filter_channels)
|
115 |
+
|
116 |
+
self.module_list = nn.ModuleList()
|
117 |
+
self.module_list.append(self.conv_1)
|
118 |
+
self.module_list.append(nn.ReLU())
|
119 |
+
self.module_list.append(self.norm_1)
|
120 |
+
self.module_list.append(self.drop)
|
121 |
+
|
122 |
+
for i in range(12):
|
123 |
+
self.module_list.append(nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2))
|
124 |
+
self.module_list.append(nn.ReLU())
|
125 |
+
self.module_list.append(LayerNorm(filter_channels))
|
126 |
+
self.module_list.append(nn.Dropout(p_dropout))
|
127 |
+
|
128 |
+
|
129 |
+
# attention layer every 3 layers
|
130 |
+
self.attn_list = nn.ModuleList()
|
131 |
+
for i in range(4):
|
132 |
+
self.attn_list.append(
|
133 |
+
Encoder(
|
134 |
+
filter_channels,
|
135 |
+
filter_channels,
|
136 |
+
8,
|
137 |
+
10,
|
138 |
+
3,
|
139 |
+
p_dropout=p_dropout,
|
140 |
+
)
|
141 |
+
)
|
142 |
+
|
143 |
+
for i in range(30):
|
144 |
+
if i+1 % 3 == 0:
|
145 |
+
self.module_list.append(self.attn_list[i//3])
|
146 |
+
|
147 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
148 |
+
|
149 |
+
def forward(self, x, x_mask):
|
150 |
+
x = torch.detach(x)
|
151 |
+
for layer in self.module_list:
|
152 |
+
x = layer(x * x_mask)
|
153 |
+
x = self.proj(x * x_mask)
|
154 |
+
# x = torch.relu(x)
|
155 |
+
return x * x_mask
|
156 |
+
|
157 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
158 |
+
"""
|
159 |
+
## RoPE module
|
160 |
+
|
161 |
+
Rotary encoding transforms pairs of features by rotating in the 2D plane.
|
162 |
+
That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
|
163 |
+
Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
|
164 |
+
by an angle depending on the position of the token.
|
165 |
+
"""
|
166 |
+
|
167 |
+
def __init__(self, d: int, base: int = 10_000):
|
168 |
+
r"""
|
169 |
+
* `d` is the number of features $d$
|
170 |
+
* `base` is the constant used for calculating $\Theta$
|
171 |
+
"""
|
172 |
+
super().__init__()
|
173 |
+
|
174 |
+
self.base = base
|
175 |
+
self.d = int(d)
|
176 |
+
self.cos_cached = None
|
177 |
+
self.sin_cached = None
|
178 |
+
|
179 |
+
def _build_cache(self, x: torch.Tensor):
|
180 |
+
r"""
|
181 |
+
Cache $\cos$ and $\sin$ values
|
182 |
+
"""
|
183 |
+
# Return if cache is already built
|
184 |
+
if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
|
185 |
+
return
|
186 |
+
|
187 |
+
# Get sequence length
|
188 |
+
seq_len = x.shape[0]
|
189 |
+
|
190 |
+
# $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
191 |
+
theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
|
192 |
+
|
193 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
194 |
+
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
|
195 |
+
|
196 |
+
# Calculate the product of position index and $\theta_i$
|
197 |
+
idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
|
198 |
+
|
199 |
+
# Concatenate so that for row $m$ we have
|
200 |
+
# $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
|
201 |
+
idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
|
202 |
+
|
203 |
+
# Cache them
|
204 |
+
self.cos_cached = idx_theta2.cos()[:, None, None, :]
|
205 |
+
self.sin_cached = idx_theta2.sin()[:, None, None, :]
|
206 |
+
|
207 |
+
def _neg_half(self, x: torch.Tensor):
|
208 |
+
# $\frac{d}{2}$
|
209 |
+
d_2 = self.d // 2
|
210 |
+
|
211 |
+
# Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
212 |
+
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
|
213 |
+
|
214 |
+
def forward(self, x: torch.Tensor):
|
215 |
+
"""
|
216 |
+
* `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
|
217 |
+
"""
|
218 |
+
# Cache $\cos$ and $\sin$ values
|
219 |
+
x = rearrange(x, "b h t d -> t b h d")
|
220 |
+
|
221 |
+
self._build_cache(x)
|
222 |
+
|
223 |
+
# Split the features, we can choose to apply rotary embeddings only to a partial set of features.
|
224 |
+
x_rope, x_pass = x[..., : self.d], x[..., self.d :]
|
225 |
+
|
226 |
+
# Calculate
|
227 |
+
# $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
228 |
+
neg_half_x = self._neg_half(x_rope)
|
229 |
+
|
230 |
+
x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
|
231 |
+
|
232 |
+
return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
|
233 |
+
|
234 |
+
|
235 |
+
class MultiHeadAttention(nn.Module):
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
channels,
|
239 |
+
out_channels,
|
240 |
+
n_heads,
|
241 |
+
heads_share=True,
|
242 |
+
p_dropout=0.0,
|
243 |
+
proximal_bias=False,
|
244 |
+
proximal_init=False,
|
245 |
+
):
|
246 |
+
super().__init__()
|
247 |
+
assert channels % n_heads == 0
|
248 |
+
|
249 |
+
self.channels = channels
|
250 |
+
self.out_channels = out_channels
|
251 |
+
self.n_heads = n_heads
|
252 |
+
self.heads_share = heads_share
|
253 |
+
self.proximal_bias = proximal_bias
|
254 |
+
self.p_dropout = p_dropout
|
255 |
+
self.attn = None
|
256 |
+
|
257 |
+
self.k_channels = channels // n_heads
|
258 |
+
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
259 |
+
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
260 |
+
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
261 |
+
|
262 |
+
# from https://nn.labml.ai/transformers/rope/index.html
|
263 |
+
self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
264 |
+
self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
265 |
+
|
266 |
+
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
267 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
268 |
+
|
269 |
+
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
270 |
+
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
271 |
+
if proximal_init:
|
272 |
+
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
273 |
+
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
274 |
+
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
275 |
+
|
276 |
+
def forward(self, x, c, attn_mask=None):
|
277 |
+
q = self.conv_q(x)
|
278 |
+
k = self.conv_k(c)
|
279 |
+
v = self.conv_v(c)
|
280 |
+
|
281 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
282 |
+
|
283 |
+
x = self.conv_o(x)
|
284 |
+
return x
|
285 |
+
|
286 |
+
def attention(self, query, key, value, mask=None):
|
287 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
288 |
+
query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
|
289 |
+
key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
|
290 |
+
value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
|
291 |
+
|
292 |
+
query = self.query_rotary_pe(query)
|
293 |
+
key = self.key_rotary_pe(key)
|
294 |
+
|
295 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
296 |
+
|
297 |
+
if self.proximal_bias:
|
298 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
299 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
300 |
+
if mask is not None:
|
301 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
302 |
+
p_attn = torch.nn.functional.softmax(scores, dim=-1)
|
303 |
+
p_attn = self.drop(p_attn)
|
304 |
+
output = torch.matmul(p_attn, value)
|
305 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
306 |
+
return output, p_attn
|
307 |
+
|
308 |
+
@staticmethod
|
309 |
+
def _attention_bias_proximal(length):
|
310 |
+
r = torch.arange(length, dtype=torch.float32)
|
311 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
312 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
313 |
+
|
314 |
+
|
315 |
+
class FFN(nn.Module):
|
316 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
|
317 |
+
super().__init__()
|
318 |
+
self.in_channels = in_channels
|
319 |
+
self.out_channels = out_channels
|
320 |
+
self.filter_channels = filter_channels
|
321 |
+
self.kernel_size = kernel_size
|
322 |
+
self.p_dropout = p_dropout
|
323 |
+
|
324 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
325 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
|
326 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
327 |
+
|
328 |
+
def forward(self, x, x_mask):
|
329 |
+
x = self.conv_1(x * x_mask)
|
330 |
+
x = torch.relu(x)
|
331 |
+
x = self.drop(x)
|
332 |
+
x = self.conv_2(x * x_mask)
|
333 |
+
return x * x_mask
|
334 |
+
|
335 |
+
|
336 |
+
class Encoder(nn.Module):
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
hidden_channels,
|
340 |
+
filter_channels,
|
341 |
+
n_heads,
|
342 |
+
n_layers,
|
343 |
+
kernel_size=1,
|
344 |
+
p_dropout=0.0,
|
345 |
+
**kwargs,
|
346 |
+
):
|
347 |
+
super().__init__()
|
348 |
+
self.hidden_channels = hidden_channels
|
349 |
+
self.filter_channels = filter_channels
|
350 |
+
self.n_heads = n_heads
|
351 |
+
self.n_layers = n_layers
|
352 |
+
self.kernel_size = kernel_size
|
353 |
+
self.p_dropout = p_dropout
|
354 |
+
|
355 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
356 |
+
self.attn_layers = torch.nn.ModuleList()
|
357 |
+
self.norm_layers_1 = torch.nn.ModuleList()
|
358 |
+
self.ffn_layers = torch.nn.ModuleList()
|
359 |
+
self.norm_layers_2 = torch.nn.ModuleList()
|
360 |
+
for _ in range(self.n_layers):
|
361 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
362 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
363 |
+
self.ffn_layers.append(
|
364 |
+
FFN(
|
365 |
+
hidden_channels,
|
366 |
+
hidden_channels,
|
367 |
+
filter_channels,
|
368 |
+
kernel_size,
|
369 |
+
p_dropout=p_dropout,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
373 |
+
|
374 |
+
def forward(self, x, x_mask):
|
375 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
376 |
+
for i in range(self.n_layers):
|
377 |
+
x = x * x_mask
|
378 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
379 |
+
y = self.drop(y)
|
380 |
+
x = self.norm_layers_1[i](x + y)
|
381 |
+
y = self.ffn_layers[i](x, x_mask)
|
382 |
+
y = self.drop(y)
|
383 |
+
x = self.norm_layers_2[i](x + y)
|
384 |
+
x = x * x_mask
|
385 |
+
return x
|
386 |
+
|
387 |
+
class Decoder(nn.Module):
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
hidden_channels,
|
391 |
+
filter_channels,
|
392 |
+
n_heads,
|
393 |
+
n_layers,
|
394 |
+
kernel_size=1,
|
395 |
+
p_dropout=0.0,
|
396 |
+
proximal_bias=False,
|
397 |
+
proximal_init=True,
|
398 |
+
**kwargs
|
399 |
+
):
|
400 |
+
super().__init__()
|
401 |
+
self.hidden_channels = hidden_channels
|
402 |
+
self.filter_channels = filter_channels
|
403 |
+
self.n_heads = n_heads
|
404 |
+
self.n_layers = n_layers
|
405 |
+
self.kernel_size = kernel_size
|
406 |
+
self.p_dropout = p_dropout
|
407 |
+
self.proximal_bias = proximal_bias
|
408 |
+
self.proximal_init = proximal_init
|
409 |
+
|
410 |
+
self.drop = nn.Dropout(p_dropout)
|
411 |
+
self.self_attn_layers = nn.ModuleList()
|
412 |
+
self.norm_layers_0 = nn.ModuleList()
|
413 |
+
self.encdec_attn_layers = nn.ModuleList()
|
414 |
+
self.norm_layers_1 = nn.ModuleList()
|
415 |
+
self.ffn_layers = nn.ModuleList()
|
416 |
+
self.norm_layers_2 = nn.ModuleList()
|
417 |
+
for i in range(self.n_layers):
|
418 |
+
self.self_attn_layers.append(
|
419 |
+
MultiHeadAttention(
|
420 |
+
hidden_channels,
|
421 |
+
hidden_channels,
|
422 |
+
n_heads,
|
423 |
+
p_dropout=p_dropout
|
424 |
+
)
|
425 |
+
)
|
426 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
427 |
+
self.encdec_attn_layers.append(
|
428 |
+
MultiHeadAttention(
|
429 |
+
hidden_channels,
|
430 |
+
hidden_channels,
|
431 |
+
n_heads,
|
432 |
+
p_dropout=p_dropout
|
433 |
+
)
|
434 |
+
)
|
435 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
436 |
+
self.ffn_layers.append(
|
437 |
+
FFN(
|
438 |
+
hidden_channels,
|
439 |
+
hidden_channels,
|
440 |
+
filter_channels,
|
441 |
+
kernel_size,
|
442 |
+
p_dropout=p_dropout,
|
443 |
+
)
|
444 |
+
)
|
445 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
446 |
+
|
447 |
+
def forward(self, x, x_mask, h, h_mask):
|
448 |
+
"""
|
449 |
+
x: decoder input
|
450 |
+
h: encoder output
|
451 |
+
"""
|
452 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
453 |
+
device=x.device, dtype=x.dtype
|
454 |
+
)
|
455 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
456 |
+
x = x * x_mask
|
457 |
+
for i in range(self.n_layers):
|
458 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
459 |
+
y = self.drop(y)
|
460 |
+
x = self.norm_layers_0[i](x + y)
|
461 |
+
|
462 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
463 |
+
y = self.drop(y)
|
464 |
+
x = self.norm_layers_1[i](x + y)
|
465 |
+
|
466 |
+
y = self.ffn_layers[i](x, x_mask)
|
467 |
+
y = self.drop(y)
|
468 |
+
x = self.norm_layers_2[i](x + y)
|
469 |
+
x = x * x_mask
|
470 |
+
return x
|
471 |
+
|
472 |
+
class TextEncoder(nn.Module):
|
473 |
+
def __init__(
|
474 |
+
self,
|
475 |
+
encoder_type,
|
476 |
+
encoder_params,
|
477 |
+
duration_predictor_params,
|
478 |
+
n_vocab,
|
479 |
+
speech_in_channels,
|
480 |
+
):
|
481 |
+
super().__init__()
|
482 |
+
self.encoder_type = encoder_type
|
483 |
+
self.n_vocab = n_vocab
|
484 |
+
self.n_feats = encoder_params.n_feats
|
485 |
+
self.n_channels = encoder_params.n_channels
|
486 |
+
|
487 |
+
self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
|
488 |
+
torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
|
489 |
+
|
490 |
+
self.speech_in_channels = speech_in_channels
|
491 |
+
self.speech_out_channels = self.n_channels
|
492 |
+
# self.speech_prompt_proj = torch.nn.Conv1d(self.speech_in_channels, self.speech_out_channels, 1)
|
493 |
+
self.speech_prompt_proj = PosteriorEncoder(
|
494 |
+
self.speech_in_channels,
|
495 |
+
self.speech_out_channels,
|
496 |
+
self.speech_out_channels,
|
497 |
+
1,
|
498 |
+
1,
|
499 |
+
1,
|
500 |
+
gin_channels=0,
|
501 |
+
)
|
502 |
+
|
503 |
+
self.prenet = ConvReluNorm(
|
504 |
+
self.n_channels,
|
505 |
+
self.n_channels,
|
506 |
+
self.n_channels,
|
507 |
+
kernel_size=5,
|
508 |
+
n_layers=3,
|
509 |
+
p_dropout=0,
|
510 |
+
)
|
511 |
+
|
512 |
+
# self.speech_prompt_encoder = Encoder(
|
513 |
+
# encoder_params.n_channels,
|
514 |
+
# encoder_params.filter_channels,
|
515 |
+
# encoder_params.n_heads,
|
516 |
+
# encoder_params.n_layers,
|
517 |
+
# encoder_params.kernel_size,
|
518 |
+
# encoder_params.p_dropout,
|
519 |
+
# )
|
520 |
+
|
521 |
+
self.text_base_encoder = Encoder(
|
522 |
+
encoder_params.n_channels,
|
523 |
+
encoder_params.filter_channels,
|
524 |
+
encoder_params.n_heads,
|
525 |
+
encoder_params.n_layers,
|
526 |
+
encoder_params.kernel_size,
|
527 |
+
encoder_params.p_dropout,
|
528 |
+
)
|
529 |
+
|
530 |
+
# self.decoder = Decoder(
|
531 |
+
# encoder_params.n_channels,
|
532 |
+
# encoder_params.filter_channels,
|
533 |
+
# encoder_params.n_heads,
|
534 |
+
# encoder_params.n_layers,
|
535 |
+
# encoder_params.kernel_size,
|
536 |
+
# encoder_params.p_dropout,
|
537 |
+
# )
|
538 |
+
|
539 |
+
self.transformerblock = BasicTransformerBlock(
|
540 |
+
encoder_params.n_channels,
|
541 |
+
encoder_params.n_heads,
|
542 |
+
encoder_params.n_channels // encoder_params.n_heads,
|
543 |
+
encoder_params.p_dropout,
|
544 |
+
encoder_params.n_channels,
|
545 |
+
activation_fn="gelu",
|
546 |
+
attention_bias=False,
|
547 |
+
only_cross_attention=False,
|
548 |
+
double_self_attention=False,
|
549 |
+
upcast_attention=False,
|
550 |
+
norm_elementwise_affine=True,
|
551 |
+
norm_type="layer_norm",
|
552 |
+
final_dropout=False,
|
553 |
+
)
|
554 |
+
self.proj_m = torch.nn.Conv1d(self.n_channels, self.n_feats, 1)
|
555 |
+
|
556 |
+
self.proj_w = DurationPredictor(
|
557 |
+
self.n_channels,
|
558 |
+
duration_predictor_params.filter_channels_dp,
|
559 |
+
duration_predictor_params.kernel_size,
|
560 |
+
duration_predictor_params.p_dropout,
|
561 |
+
)
|
562 |
+
# self.proj_w = DurationPredictorNS2(
|
563 |
+
# self.n_channels,
|
564 |
+
# duration_predictor_params.filter_channels_dp,
|
565 |
+
# duration_predictor_params.kernel_size,
|
566 |
+
# duration_predictor_params.p_dropout,
|
567 |
+
# )
|
568 |
+
|
569 |
+
def forward(
|
570 |
+
self,
|
571 |
+
x_input,
|
572 |
+
x_lengths,
|
573 |
+
speech_prompt,
|
574 |
+
):
|
575 |
+
"""Run forward pass to the transformer based encoder and duration predictor
|
576 |
+
|
577 |
+
Args:
|
578 |
+
x (torch.Tensor): text input
|
579 |
+
shape: (batch_size, max_text_length)
|
580 |
+
x_lengths (torch.Tensor): text input lengths
|
581 |
+
shape: (batch_size,)
|
582 |
+
speech_prompt (torch.Tensor): speech prompt input
|
583 |
+
|
584 |
+
Returns:
|
585 |
+
mu (torch.Tensor): average output of the encoder
|
586 |
+
shape: (batch_size, n_feats, max_text_length)
|
587 |
+
logw (torch.Tensor): log duration predicted by the duration predictor
|
588 |
+
shape: (batch_size, 1, max_text_length)
|
589 |
+
x_mask (torch.Tensor): mask for the text input
|
590 |
+
shape: (batch_size, 1, max_text_length)
|
591 |
+
"""
|
592 |
+
x_emb = self.emb(x_input) * math.sqrt(self.n_channels)
|
593 |
+
x_emb = torch.transpose(x_emb, 1, -1)
|
594 |
+
x_speech_lengths = x_lengths + speech_prompt.size(2)
|
595 |
+
speech_lengths = x_speech_lengths - x_lengths
|
596 |
+
# speech_prompt_proj = self.speech_prompt_proj(speech_prompt)
|
597 |
+
speech_prompt_proj, speech_mask = self.speech_prompt_proj(speech_prompt, speech_lengths)
|
598 |
+
x_speech_cat = torch.cat([speech_prompt_proj, x_emb], dim=2)
|
599 |
+
x_speech_mask = torch.unsqueeze(sequence_mask(x_speech_lengths, x_speech_cat.size(2)), 1).to(x_speech_cat.dtype)
|
600 |
+
|
601 |
+
x_prenet = self.prenet(x_speech_cat, x_speech_mask)
|
602 |
+
# split speech prompt and text input
|
603 |
+
speech_split = x_prenet[:, :, :speech_prompt_proj.size(2)]
|
604 |
+
x_split = x_prenet[:, :, speech_prompt_proj.size(2):]
|
605 |
+
x_split_mask = torch.unsqueeze(sequence_mask(x_lengths, x_split.size(2)), 1).to(x_split.dtype)
|
606 |
+
speech_lengths = x_speech_lengths - x_lengths
|
607 |
+
speech_mask = torch.unsqueeze(sequence_mask(speech_lengths, speech_split.size(2)), 1).to(x_split.dtype)
|
608 |
+
|
609 |
+
x_split = self.transformerblock(x_split.transpose(1,2), x_split_mask, speech_split.transpose(1,2), speech_mask)
|
610 |
+
x_split = x_split.transpose(1,2)
|
611 |
+
|
612 |
+
# x_split_mask = torch.unsqueeze(sequence_mask(x_lengths, x_split.size(2)), 1).to(x.dtype)
|
613 |
+
|
614 |
+
mu = self.proj_m(x_split) * x_split_mask
|
615 |
+
x_dp = torch.detach(x_split)
|
616 |
+
logw = self.proj_w(x_dp, x_split_mask)
|
617 |
+
|
618 |
+
return mu, logw, x_split_mask
|
pflow/models/components/test.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pflow.hifigan.meldataset import mel_spectrogram
|
2 |
+
import torch
|
3 |
+
|
4 |
+
audio = torch.randn(2,1, 1000)
|
5 |
+
mels = mel_spectrogram(audio, 1024, 80, 22050, 256, 1024, 0, 8000, center=False)
|
6 |
+
print(mels.shape)
|
pflow/models/components/text_encoder.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
import pflow.utils as utils
|
10 |
+
from pflow.utils.model import sequence_mask
|
11 |
+
|
12 |
+
log = utils.get_pylogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class LayerNorm(nn.Module):
|
16 |
+
def __init__(self, channels, eps=1e-4):
|
17 |
+
super().__init__()
|
18 |
+
self.channels = channels
|
19 |
+
self.eps = eps
|
20 |
+
|
21 |
+
self.gamma = torch.nn.Parameter(torch.ones(channels))
|
22 |
+
self.beta = torch.nn.Parameter(torch.zeros(channels))
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
n_dims = len(x.shape)
|
26 |
+
mean = torch.mean(x, 1, keepdim=True)
|
27 |
+
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
|
28 |
+
|
29 |
+
x = (x - mean) * torch.rsqrt(variance + self.eps)
|
30 |
+
|
31 |
+
shape = [1, -1] + [1] * (n_dims - 2)
|
32 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class ConvReluNorm(nn.Module):
|
37 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
38 |
+
super().__init__()
|
39 |
+
self.in_channels = in_channels
|
40 |
+
self.hidden_channels = hidden_channels
|
41 |
+
self.out_channels = out_channels
|
42 |
+
self.kernel_size = kernel_size
|
43 |
+
self.n_layers = n_layers
|
44 |
+
self.p_dropout = p_dropout
|
45 |
+
|
46 |
+
self.conv_layers = torch.nn.ModuleList()
|
47 |
+
self.norm_layers = torch.nn.ModuleList()
|
48 |
+
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
|
51 |
+
for _ in range(n_layers - 1):
|
52 |
+
self.conv_layers.append(
|
53 |
+
torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
|
54 |
+
)
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DurationPredictor(nn.Module):
|
71 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
72 |
+
super().__init__()
|
73 |
+
self.in_channels = in_channels
|
74 |
+
self.filter_channels = filter_channels
|
75 |
+
self.p_dropout = p_dropout
|
76 |
+
|
77 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
78 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
79 |
+
self.norm_1 = LayerNorm(filter_channels)
|
80 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
81 |
+
self.norm_2 = LayerNorm(filter_channels)
|
82 |
+
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
83 |
+
|
84 |
+
def forward(self, x, x_mask):
|
85 |
+
x = self.conv_1(x * x_mask)
|
86 |
+
x = torch.relu(x)
|
87 |
+
x = self.norm_1(x)
|
88 |
+
x = self.drop(x)
|
89 |
+
x = self.conv_2(x * x_mask)
|
90 |
+
x = torch.relu(x)
|
91 |
+
x = self.norm_2(x)
|
92 |
+
x = self.drop(x)
|
93 |
+
x = self.proj(x * x_mask)
|
94 |
+
return x * x_mask
|
95 |
+
|
96 |
+
|
97 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
98 |
+
"""
|
99 |
+
## RoPE module
|
100 |
+
|
101 |
+
Rotary encoding transforms pairs of features by rotating in the 2D plane.
|
102 |
+
That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
|
103 |
+
Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
|
104 |
+
by an angle depending on the position of the token.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(self, d: int, base: int = 10_000):
|
108 |
+
r"""
|
109 |
+
* `d` is the number of features $d$
|
110 |
+
* `base` is the constant used for calculating $\Theta$
|
111 |
+
"""
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.base = base
|
115 |
+
self.d = int(d)
|
116 |
+
self.cos_cached = None
|
117 |
+
self.sin_cached = None
|
118 |
+
|
119 |
+
def _build_cache(self, x: torch.Tensor):
|
120 |
+
r"""
|
121 |
+
Cache $\cos$ and $\sin$ values
|
122 |
+
"""
|
123 |
+
# Return if cache is already built
|
124 |
+
if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
|
125 |
+
return
|
126 |
+
|
127 |
+
# Get sequence length
|
128 |
+
seq_len = x.shape[0]
|
129 |
+
|
130 |
+
# $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
131 |
+
theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
|
132 |
+
|
133 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
134 |
+
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
|
135 |
+
|
136 |
+
# Calculate the product of position index and $\theta_i$
|
137 |
+
idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
|
138 |
+
|
139 |
+
# Concatenate so that for row $m$ we have
|
140 |
+
# $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
|
141 |
+
idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
|
142 |
+
|
143 |
+
# Cache them
|
144 |
+
self.cos_cached = idx_theta2.cos()[:, None, None, :]
|
145 |
+
self.sin_cached = idx_theta2.sin()[:, None, None, :]
|
146 |
+
|
147 |
+
def _neg_half(self, x: torch.Tensor):
|
148 |
+
# $\frac{d}{2}$
|
149 |
+
d_2 = self.d // 2
|
150 |
+
|
151 |
+
# Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
152 |
+
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
|
153 |
+
|
154 |
+
def forward(self, x: torch.Tensor):
|
155 |
+
"""
|
156 |
+
* `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
|
157 |
+
"""
|
158 |
+
# Cache $\cos$ and $\sin$ values
|
159 |
+
x = rearrange(x, "b h t d -> t b h d")
|
160 |
+
|
161 |
+
self._build_cache(x)
|
162 |
+
|
163 |
+
# Split the features, we can choose to apply rotary embeddings only to a partial set of features.
|
164 |
+
x_rope, x_pass = x[..., : self.d], x[..., self.d :]
|
165 |
+
|
166 |
+
# Calculate
|
167 |
+
# $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
168 |
+
neg_half_x = self._neg_half(x_rope)
|
169 |
+
|
170 |
+
x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
|
171 |
+
|
172 |
+
return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
|
173 |
+
|
174 |
+
|
175 |
+
class MultiHeadAttention(nn.Module):
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
channels,
|
179 |
+
out_channels,
|
180 |
+
n_heads,
|
181 |
+
heads_share=True,
|
182 |
+
p_dropout=0.0,
|
183 |
+
proximal_bias=False,
|
184 |
+
proximal_init=False,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
assert channels % n_heads == 0
|
188 |
+
|
189 |
+
self.channels = channels
|
190 |
+
self.out_channels = out_channels
|
191 |
+
self.n_heads = n_heads
|
192 |
+
self.heads_share = heads_share
|
193 |
+
self.proximal_bias = proximal_bias
|
194 |
+
self.p_dropout = p_dropout
|
195 |
+
self.attn = None
|
196 |
+
|
197 |
+
self.k_channels = channels // n_heads
|
198 |
+
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
199 |
+
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
200 |
+
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
201 |
+
|
202 |
+
# from https://nn.labml.ai/transformers/rope/index.html
|
203 |
+
self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
204 |
+
self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
205 |
+
|
206 |
+
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
207 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
208 |
+
|
209 |
+
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
210 |
+
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
211 |
+
if proximal_init:
|
212 |
+
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
213 |
+
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
214 |
+
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
215 |
+
|
216 |
+
def forward(self, x, c, attn_mask=None):
|
217 |
+
q = self.conv_q(x)
|
218 |
+
k = self.conv_k(c)
|
219 |
+
v = self.conv_v(c)
|
220 |
+
|
221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
+
|
223 |
+
x = self.conv_o(x)
|
224 |
+
return x
|
225 |
+
|
226 |
+
def attention(self, query, key, value, mask=None):
|
227 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
228 |
+
query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
|
229 |
+
key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
|
230 |
+
value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
|
231 |
+
|
232 |
+
query = self.query_rotary_pe(query)
|
233 |
+
key = self.key_rotary_pe(key)
|
234 |
+
|
235 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
236 |
+
|
237 |
+
if self.proximal_bias:
|
238 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
239 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
240 |
+
if mask is not None:
|
241 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
242 |
+
p_attn = torch.nn.functional.softmax(scores, dim=-1)
|
243 |
+
p_attn = self.drop(p_attn)
|
244 |
+
output = torch.matmul(p_attn, value)
|
245 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
246 |
+
return output, p_attn
|
247 |
+
|
248 |
+
@staticmethod
|
249 |
+
def _attention_bias_proximal(length):
|
250 |
+
r = torch.arange(length, dtype=torch.float32)
|
251 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
252 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
253 |
+
|
254 |
+
|
255 |
+
class FFN(nn.Module):
|
256 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
|
257 |
+
super().__init__()
|
258 |
+
self.in_channels = in_channels
|
259 |
+
self.out_channels = out_channels
|
260 |
+
self.filter_channels = filter_channels
|
261 |
+
self.kernel_size = kernel_size
|
262 |
+
self.p_dropout = p_dropout
|
263 |
+
|
264 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
265 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
|
266 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
267 |
+
|
268 |
+
def forward(self, x, x_mask):
|
269 |
+
x = self.conv_1(x * x_mask)
|
270 |
+
x = torch.relu(x)
|
271 |
+
x = self.drop(x)
|
272 |
+
x = self.conv_2(x * x_mask)
|
273 |
+
return x * x_mask
|
274 |
+
|
275 |
+
|
276 |
+
class Encoder(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
hidden_channels,
|
280 |
+
filter_channels,
|
281 |
+
n_heads,
|
282 |
+
n_layers,
|
283 |
+
kernel_size=1,
|
284 |
+
p_dropout=0.0,
|
285 |
+
**kwargs,
|
286 |
+
):
|
287 |
+
super().__init__()
|
288 |
+
self.hidden_channels = hidden_channels
|
289 |
+
self.filter_channels = filter_channels
|
290 |
+
self.n_heads = n_heads
|
291 |
+
self.n_layers = n_layers
|
292 |
+
self.kernel_size = kernel_size
|
293 |
+
self.p_dropout = p_dropout
|
294 |
+
|
295 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
296 |
+
self.attn_layers = torch.nn.ModuleList()
|
297 |
+
self.norm_layers_1 = torch.nn.ModuleList()
|
298 |
+
self.ffn_layers = torch.nn.ModuleList()
|
299 |
+
self.norm_layers_2 = torch.nn.ModuleList()
|
300 |
+
for _ in range(self.n_layers):
|
301 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
302 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
303 |
+
self.ffn_layers.append(
|
304 |
+
FFN(
|
305 |
+
hidden_channels,
|
306 |
+
hidden_channels,
|
307 |
+
filter_channels,
|
308 |
+
kernel_size,
|
309 |
+
p_dropout=p_dropout,
|
310 |
+
)
|
311 |
+
)
|
312 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
313 |
+
|
314 |
+
def forward(self, x, x_mask):
|
315 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
316 |
+
for i in range(self.n_layers):
|
317 |
+
x = x * x_mask
|
318 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
319 |
+
y = self.drop(y)
|
320 |
+
x = self.norm_layers_1[i](x + y)
|
321 |
+
y = self.ffn_layers[i](x, x_mask)
|
322 |
+
y = self.drop(y)
|
323 |
+
x = self.norm_layers_2[i](x + y)
|
324 |
+
x = x * x_mask
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
class TextEncoder(nn.Module):
|
329 |
+
def __init__(
|
330 |
+
self,
|
331 |
+
encoder_type,
|
332 |
+
encoder_params,
|
333 |
+
duration_predictor_params,
|
334 |
+
n_vocab,
|
335 |
+
n_spks=1,
|
336 |
+
spk_emb_dim=128,
|
337 |
+
):
|
338 |
+
super().__init__()
|
339 |
+
self.encoder_type = encoder_type
|
340 |
+
self.n_vocab = n_vocab
|
341 |
+
self.n_feats = encoder_params.n_feats
|
342 |
+
self.n_channels = encoder_params.n_channels
|
343 |
+
self.spk_emb_dim = spk_emb_dim
|
344 |
+
self.n_spks = n_spks
|
345 |
+
|
346 |
+
self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
|
347 |
+
torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
|
348 |
+
|
349 |
+
if encoder_params.prenet:
|
350 |
+
self.prenet = ConvReluNorm(
|
351 |
+
self.n_channels,
|
352 |
+
self.n_channels,
|
353 |
+
self.n_channels,
|
354 |
+
kernel_size=5,
|
355 |
+
n_layers=3,
|
356 |
+
p_dropout=0.5,
|
357 |
+
)
|
358 |
+
else:
|
359 |
+
self.prenet = lambda x, x_mask: x
|
360 |
+
|
361 |
+
self.encoder = Encoder(
|
362 |
+
encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
363 |
+
encoder_params.filter_channels,
|
364 |
+
encoder_params.n_heads,
|
365 |
+
encoder_params.n_layers,
|
366 |
+
encoder_params.kernel_size,
|
367 |
+
encoder_params.p_dropout,
|
368 |
+
)
|
369 |
+
|
370 |
+
self.encoder_dp = Encoder(
|
371 |
+
encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
372 |
+
encoder_params.filter_channels,
|
373 |
+
encoder_params.n_heads,
|
374 |
+
encoder_params.n_layers,
|
375 |
+
encoder_params.kernel_size,
|
376 |
+
encoder_params.p_dropout,
|
377 |
+
)
|
378 |
+
|
379 |
+
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
380 |
+
# self.proj_v = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
381 |
+
|
382 |
+
self.proj_w = DurationPredictor(
|
383 |
+
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
384 |
+
duration_predictor_params.filter_channels_dp,
|
385 |
+
duration_predictor_params.kernel_size,
|
386 |
+
duration_predictor_params.p_dropout,
|
387 |
+
)
|
388 |
+
|
389 |
+
def forward(self, x, x_lengths, spks=None):
|
390 |
+
"""Run forward pass to the transformer based encoder and duration predictor
|
391 |
+
|
392 |
+
Args:
|
393 |
+
x (torch.Tensor): text input
|
394 |
+
shape: (batch_size, max_text_length)
|
395 |
+
x_lengths (torch.Tensor): text input lengths
|
396 |
+
shape: (batch_size,)
|
397 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
398 |
+
shape: (batch_size,)
|
399 |
+
|
400 |
+
Returns:
|
401 |
+
mu (torch.Tensor): average output of the encoder
|
402 |
+
shape: (batch_size, n_feats, max_text_length)
|
403 |
+
logw (torch.Tensor): log duration predicted by the duration predictor
|
404 |
+
shape: (batch_size, 1, max_text_length)
|
405 |
+
x_mask (torch.Tensor): mask for the text input
|
406 |
+
shape: (batch_size, 1, max_text_length)
|
407 |
+
"""
|
408 |
+
x = self.emb(x) * math.sqrt(self.n_channels)
|
409 |
+
x = torch.transpose(x, 1, -1)
|
410 |
+
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
411 |
+
|
412 |
+
x = self.prenet(x, x_mask)
|
413 |
+
if self.n_spks > 1:
|
414 |
+
x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
|
415 |
+
x_dp = torch.detach(x)
|
416 |
+
x_dp = self.encoder_dp(x_dp, x_mask)
|
417 |
+
|
418 |
+
x = self.encoder(x, x_mask)
|
419 |
+
mu = self.proj_m(x) * x_mask
|
420 |
+
# logs = self.proj_v(x) * x_mask
|
421 |
+
|
422 |
+
# x_dp = torch.detach(x)
|
423 |
+
logw = self.proj_w(x_dp, x_mask)
|
424 |
+
|
425 |
+
return mu, logw, x_mask
|
pflow/models/components/transformer.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from diffusers.models.attention import (
|
6 |
+
GEGLU,
|
7 |
+
GELU,
|
8 |
+
AdaLayerNorm,
|
9 |
+
AdaLayerNormZero,
|
10 |
+
ApproximateGELU,
|
11 |
+
)
|
12 |
+
from diffusers.models.attention_processor import Attention
|
13 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
14 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
15 |
+
|
16 |
+
|
17 |
+
class SnakeBeta(nn.Module):
|
18 |
+
"""
|
19 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
20 |
+
Shape:
|
21 |
+
- Input: (B, C, T)
|
22 |
+
- Output: (B, C, T), same shape as the input
|
23 |
+
Parameters:
|
24 |
+
- alpha - trainable parameter that controls frequency
|
25 |
+
- beta - trainable parameter that controls magnitude
|
26 |
+
References:
|
27 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
28 |
+
https://arxiv.org/abs/2006.08195
|
29 |
+
Examples:
|
30 |
+
>>> a1 = snakebeta(256)
|
31 |
+
>>> x = torch.randn(256)
|
32 |
+
>>> x = a1(x)
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
36 |
+
"""
|
37 |
+
Initialization.
|
38 |
+
INPUT:
|
39 |
+
- in_features: shape of the input
|
40 |
+
- alpha - trainable parameter that controls frequency
|
41 |
+
- beta - trainable parameter that controls magnitude
|
42 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
43 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
44 |
+
alpha will be trained along with the rest of your model.
|
45 |
+
"""
|
46 |
+
super().__init__()
|
47 |
+
self.in_features = out_features if isinstance(out_features, list) else [out_features]
|
48 |
+
self.proj = LoRACompatibleLinear(in_features, out_features)
|
49 |
+
|
50 |
+
# initialize alpha
|
51 |
+
self.alpha_logscale = alpha_logscale
|
52 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
53 |
+
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
|
54 |
+
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
|
55 |
+
else: # linear scale alphas initialized to ones
|
56 |
+
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
|
57 |
+
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
|
58 |
+
|
59 |
+
self.alpha.requires_grad = alpha_trainable
|
60 |
+
self.beta.requires_grad = alpha_trainable
|
61 |
+
|
62 |
+
self.no_div_by_zero = 0.000000001
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
"""
|
66 |
+
Forward pass of the function.
|
67 |
+
Applies the function to the input elementwise.
|
68 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
69 |
+
"""
|
70 |
+
x = self.proj(x)
|
71 |
+
if self.alpha_logscale:
|
72 |
+
alpha = torch.exp(self.alpha)
|
73 |
+
beta = torch.exp(self.beta)
|
74 |
+
else:
|
75 |
+
alpha = self.alpha
|
76 |
+
beta = self.beta
|
77 |
+
|
78 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
|
79 |
+
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class FeedForward(nn.Module):
|
84 |
+
r"""
|
85 |
+
A feed-forward layer.
|
86 |
+
|
87 |
+
Parameters:
|
88 |
+
dim (`int`): The number of channels in the input.
|
89 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
90 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
91 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
92 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
93 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
dim: int,
|
99 |
+
dim_out: Optional[int] = None,
|
100 |
+
mult: int = 4,
|
101 |
+
dropout: float = 0.0,
|
102 |
+
activation_fn: str = "geglu",
|
103 |
+
final_dropout: bool = False,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
inner_dim = int(dim * mult)
|
107 |
+
dim_out = dim_out if dim_out is not None else dim
|
108 |
+
|
109 |
+
if activation_fn == "gelu":
|
110 |
+
act_fn = GELU(dim, inner_dim)
|
111 |
+
if activation_fn == "gelu-approximate":
|
112 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
113 |
+
elif activation_fn == "geglu":
|
114 |
+
act_fn = GEGLU(dim, inner_dim)
|
115 |
+
elif activation_fn == "geglu-approximate":
|
116 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
117 |
+
elif activation_fn == "snakebeta":
|
118 |
+
act_fn = SnakeBeta(dim, inner_dim)
|
119 |
+
|
120 |
+
self.net = nn.ModuleList([])
|
121 |
+
# project in
|
122 |
+
self.net.append(act_fn)
|
123 |
+
# project dropout
|
124 |
+
self.net.append(nn.Dropout(dropout))
|
125 |
+
# project out
|
126 |
+
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
|
127 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
128 |
+
if final_dropout:
|
129 |
+
self.net.append(nn.Dropout(dropout))
|
130 |
+
|
131 |
+
def forward(self, hidden_states):
|
132 |
+
for module in self.net:
|
133 |
+
hidden_states = module(hidden_states)
|
134 |
+
return hidden_states
|
135 |
+
|
136 |
+
|
137 |
+
@maybe_allow_in_graph
|
138 |
+
class BasicTransformerBlock(nn.Module):
|
139 |
+
r"""
|
140 |
+
A basic Transformer block.
|
141 |
+
|
142 |
+
Parameters:
|
143 |
+
dim (`int`): The number of channels in the input and output.
|
144 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
145 |
+
attention_head_dim (`int`): The number of channels in each head.
|
146 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
147 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
148 |
+
only_cross_attention (`bool`, *optional*):
|
149 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
150 |
+
double_self_attention (`bool`, *optional*):
|
151 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
152 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
153 |
+
num_embeds_ada_norm (:
|
154 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
155 |
+
attention_bias (:
|
156 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
dim: int,
|
162 |
+
num_attention_heads: int,
|
163 |
+
attention_head_dim: int,
|
164 |
+
dropout=0.0,
|
165 |
+
cross_attention_dim: Optional[int] = None,
|
166 |
+
activation_fn: str = "geglu",
|
167 |
+
num_embeds_ada_norm: Optional[int] = None,
|
168 |
+
attention_bias: bool = False,
|
169 |
+
only_cross_attention: bool = False,
|
170 |
+
double_self_attention: bool = False,
|
171 |
+
upcast_attention: bool = False,
|
172 |
+
norm_elementwise_affine: bool = True,
|
173 |
+
norm_type: str = "layer_norm",
|
174 |
+
final_dropout: bool = False,
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
self.only_cross_attention = only_cross_attention
|
178 |
+
|
179 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
180 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
181 |
+
|
182 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
183 |
+
raise ValueError(
|
184 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
185 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
186 |
+
)
|
187 |
+
|
188 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
189 |
+
# 1. Self-Attn
|
190 |
+
if self.use_ada_layer_norm:
|
191 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
192 |
+
elif self.use_ada_layer_norm_zero:
|
193 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
194 |
+
else:
|
195 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
196 |
+
self.attn1 = Attention(
|
197 |
+
query_dim=dim,
|
198 |
+
heads=num_attention_heads,
|
199 |
+
dim_head=attention_head_dim,
|
200 |
+
dropout=dropout,
|
201 |
+
bias=attention_bias,
|
202 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
203 |
+
upcast_attention=upcast_attention,
|
204 |
+
)
|
205 |
+
|
206 |
+
# 2. Cross-Attn
|
207 |
+
if cross_attention_dim is not None or double_self_attention:
|
208 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
209 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
210 |
+
# the second cross attention block.
|
211 |
+
self.norm2 = (
|
212 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
213 |
+
if self.use_ada_layer_norm
|
214 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
215 |
+
)
|
216 |
+
self.attn2 = Attention(
|
217 |
+
query_dim=dim,
|
218 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
219 |
+
heads=num_attention_heads,
|
220 |
+
dim_head=attention_head_dim,
|
221 |
+
dropout=dropout,
|
222 |
+
bias=attention_bias,
|
223 |
+
upcast_attention=upcast_attention,
|
224 |
+
# scale_qk=False, # uncomment this to not to use flash attention
|
225 |
+
) # is self-attn if encoder_hidden_states is none
|
226 |
+
else:
|
227 |
+
self.norm2 = None
|
228 |
+
self.attn2 = None
|
229 |
+
|
230 |
+
# 3. Feed-forward
|
231 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
232 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
233 |
+
|
234 |
+
# let chunk size default to None
|
235 |
+
self._chunk_size = None
|
236 |
+
self._chunk_dim = 0
|
237 |
+
|
238 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
239 |
+
# Sets chunk feed-forward
|
240 |
+
self._chunk_size = chunk_size
|
241 |
+
self._chunk_dim = dim
|
242 |
+
|
243 |
+
def forward(
|
244 |
+
self,
|
245 |
+
hidden_states: torch.FloatTensor,
|
246 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
247 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
248 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
249 |
+
timestep: Optional[torch.LongTensor] = None,
|
250 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
251 |
+
class_labels: Optional[torch.LongTensor] = None,
|
252 |
+
):
|
253 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
254 |
+
# 1. Self-Attention
|
255 |
+
if self.use_ada_layer_norm:
|
256 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
257 |
+
elif self.use_ada_layer_norm_zero:
|
258 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
259 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
260 |
+
)
|
261 |
+
else:
|
262 |
+
norm_hidden_states = self.norm1(hidden_states)
|
263 |
+
|
264 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
265 |
+
|
266 |
+
attn_output = self.attn1(
|
267 |
+
norm_hidden_states,
|
268 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
269 |
+
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
|
270 |
+
**cross_attention_kwargs,
|
271 |
+
)
|
272 |
+
if self.use_ada_layer_norm_zero:
|
273 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
274 |
+
hidden_states = attn_output + hidden_states
|
275 |
+
|
276 |
+
# 2. Cross-Attention
|
277 |
+
if self.attn2 is not None:
|
278 |
+
norm_hidden_states = (
|
279 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
280 |
+
)
|
281 |
+
|
282 |
+
attn_output = self.attn2(
|
283 |
+
norm_hidden_states,
|
284 |
+
encoder_hidden_states=encoder_hidden_states,
|
285 |
+
attention_mask=encoder_attention_mask,
|
286 |
+
**cross_attention_kwargs,
|
287 |
+
)
|
288 |
+
hidden_states = attn_output + hidden_states
|
289 |
+
|
290 |
+
# 3. Feed-forward
|
291 |
+
norm_hidden_states = self.norm3(hidden_states)
|
292 |
+
|
293 |
+
if self.use_ada_layer_norm_zero:
|
294 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
295 |
+
|
296 |
+
if self._chunk_size is not None:
|
297 |
+
# "feed_forward_chunk_size" can be used to save memory
|
298 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
299 |
+
raise ValueError(
|
300 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
301 |
+
)
|
302 |
+
|
303 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
304 |
+
ff_output = torch.cat(
|
305 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
306 |
+
dim=self._chunk_dim,
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
ff_output = self.ff(norm_hidden_states)
|
310 |
+
|
311 |
+
if self.use_ada_layer_norm_zero:
|
312 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
313 |
+
|
314 |
+
hidden_states = ff_output + hidden_states
|
315 |
+
|
316 |
+
return hidden_states
|
pflow/models/components/vits_modules.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from https://github.com/jaywalnut310/vits
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from pflow.models.components import commons
|
7 |
+
|
8 |
+
LRELU_SLOPE = 0.1
|
9 |
+
|
10 |
+
class LayerNorm(nn.Module):
|
11 |
+
def __init__(self, channels, eps=1e-5):
|
12 |
+
super().__init__()
|
13 |
+
self.channels = channels
|
14 |
+
self.eps = eps
|
15 |
+
|
16 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
17 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = x.transpose(1, -1)
|
21 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
22 |
+
return x.transpose(1, -1)
|
23 |
+
|
24 |
+
|
25 |
+
class ConvReluNorm(nn.Module):
|
26 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
27 |
+
super().__init__()
|
28 |
+
self.in_channels = in_channels
|
29 |
+
self.hidden_channels = hidden_channels
|
30 |
+
self.out_channels = out_channels
|
31 |
+
self.kernel_size = kernel_size
|
32 |
+
self.n_layers = n_layers
|
33 |
+
self.p_dropout = p_dropout
|
34 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
35 |
+
|
36 |
+
self.conv_layers = nn.ModuleList()
|
37 |
+
self.norm_layers = nn.ModuleList()
|
38 |
+
self.conv_layers.append(
|
39 |
+
nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)
|
40 |
+
)
|
41 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
42 |
+
self.relu_drop = nn.Sequential(
|
43 |
+
nn.ReLU(),
|
44 |
+
nn.Dropout(p_dropout))
|
45 |
+
for _ in range(n_layers-1):
|
46 |
+
self.conv_layers.append(nn.Conv1d(
|
47 |
+
hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)
|
48 |
+
)
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
51 |
+
self.proj.weight.data.zero_()
|
52 |
+
self.proj.bias.data.zero_()
|
53 |
+
|
54 |
+
def forward(self, x, x_mask):
|
55 |
+
x_org = x
|
56 |
+
for i in range(self.n_layers):
|
57 |
+
x = self.conv_layers[i](x * x_mask)
|
58 |
+
x = self.norm_layers[i](x)
|
59 |
+
x = self.relu_drop(x)
|
60 |
+
x = x_org + self.proj(x)
|
61 |
+
return x * x_mask
|
62 |
+
|
63 |
+
|
64 |
+
class DDSConv(nn.Module):
|
65 |
+
"""Dialted and Depth-Separable Convolution"""
|
66 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
67 |
+
super().__init__()
|
68 |
+
self.channels = channels
|
69 |
+
self.kernel_size = kernel_size
|
70 |
+
self.n_layers = n_layers
|
71 |
+
self.p_dropout = p_dropout
|
72 |
+
|
73 |
+
self.drop = nn.Dropout(p_dropout)
|
74 |
+
self.convs_sep = nn.ModuleList()
|
75 |
+
self.convs_1x1 = nn.ModuleList()
|
76 |
+
self.norms_1 = nn.ModuleList()
|
77 |
+
self.norms_2 = nn.ModuleList()
|
78 |
+
for i in range(n_layers):
|
79 |
+
dilation = kernel_size ** i
|
80 |
+
padding = (kernel_size * dilation - dilation) // 2
|
81 |
+
self.convs_sep.append(
|
82 |
+
nn.Conv1d(
|
83 |
+
channels,
|
84 |
+
channels,
|
85 |
+
kernel_size,
|
86 |
+
groups=channels,
|
87 |
+
dilation=dilation,
|
88 |
+
padding=padding
|
89 |
+
)
|
90 |
+
)
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels = hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(
|
133 |
+
hidden_channels,
|
134 |
+
2*hidden_channels,
|
135 |
+
kernel_size,
|
136 |
+
dilation=dilation,
|
137 |
+
padding=padding
|
138 |
+
)
|
139 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
140 |
+
self.in_layers.append(in_layer)
|
141 |
+
|
142 |
+
# last one is not necessary
|
143 |
+
if i < n_layers - 1:
|
144 |
+
res_skip_channels = 2 * hidden_channels
|
145 |
+
else:
|
146 |
+
res_skip_channels = hidden_channels
|
147 |
+
|
148 |
+
res_skip_layer = torch.nn.Conv1d(
|
149 |
+
hidden_channels, res_skip_channels, 1
|
150 |
+
)
|
151 |
+
res_skip_layer = torch.nn.utils.weight_norm(
|
152 |
+
res_skip_layer, name='weight'
|
153 |
+
)
|
154 |
+
self.res_skip_layers.append(res_skip_layer)
|
155 |
+
|
156 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
157 |
+
output = torch.zeros_like(x)
|
158 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
159 |
+
if g is not None:
|
160 |
+
g = g.unsqueeze(-1)
|
161 |
+
g = self.cond_layer(g)
|
162 |
+
|
163 |
+
for i in range(self.n_layers):
|
164 |
+
x_in = self.in_layers[i](x)
|
165 |
+
if g is not None:
|
166 |
+
cond_offset = i * 2 * self.hidden_channels
|
167 |
+
g_l = g[:, cond_offset:cond_offset+2*self.hidden_channels, :]
|
168 |
+
else:
|
169 |
+
g_l = torch.zeros_like(x_in)
|
170 |
+
|
171 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
172 |
+
x_in,
|
173 |
+
g_l,
|
174 |
+
n_channels_tensor
|
175 |
+
)
|
176 |
+
acts = self.drop(acts)
|
177 |
+
|
178 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
179 |
+
if i < self.n_layers - 1:
|
180 |
+
res_acts = res_skip_acts[:, :self.hidden_channels, :]
|
181 |
+
x = (x + res_acts) * x_mask
|
182 |
+
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
183 |
+
else:
|
184 |
+
output = output + res_skip_acts
|
185 |
+
return output * x_mask
|
186 |
+
|
187 |
+
def remove_weight_norm(self):
|
188 |
+
if self.gin_channels != 0:
|
189 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
190 |
+
for l in self.in_layers:
|
191 |
+
torch.nn.utils.remove_weight_norm(l)
|
192 |
+
for l in self.res_skip_layers:
|
193 |
+
torch.nn.utils.remove_weight_norm(l)
|
194 |
+
|
pflow/models/components/vits_posterior.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import pflow.models.components.vits_modules as modules
|
5 |
+
import pflow.models.components.commons as commons
|
6 |
+
|
7 |
+
class PosteriorEncoder(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self,
|
10 |
+
in_channels,
|
11 |
+
out_channels,
|
12 |
+
hidden_channels,
|
13 |
+
kernel_size,
|
14 |
+
dilation_rate,
|
15 |
+
n_layers,
|
16 |
+
gin_channels=0):
|
17 |
+
super().__init__()
|
18 |
+
self.in_channels = in_channels
|
19 |
+
self.out_channels = out_channels
|
20 |
+
self.hidden_channels = hidden_channels
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.dilation_rate = dilation_rate
|
23 |
+
self.n_layers = n_layers
|
24 |
+
self.gin_channels = gin_channels
|
25 |
+
|
26 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
27 |
+
self.enc = modules.WN(hidden_channels,
|
28 |
+
kernel_size,
|
29 |
+
dilation_rate,
|
30 |
+
n_layers,
|
31 |
+
gin_channels=gin_channels)
|
32 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
33 |
+
|
34 |
+
def forward(self, x, x_lengths, g=None):
|
35 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
36 |
+
1).to(x.dtype)
|
37 |
+
x = self.pre(x) * x_mask
|
38 |
+
x = self.enc(x, x_mask, g=g)
|
39 |
+
stats = self.proj(x) * x_mask
|
40 |
+
# m, logs = torch.split(stats, self.out_channels, dim=1)
|
41 |
+
# z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
42 |
+
# z = m * x_mask
|
43 |
+
return stats, x_mask
|
pflow/models/components/vits_wn_decoder.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import pflow.models.components.vits_modules as modules
|
7 |
+
import pflow.models.components.commons as commons
|
8 |
+
|
9 |
+
class Mish(nn.Module):
|
10 |
+
def forward(self, x):
|
11 |
+
return x * torch.tanh(F.softplus(x))
|
12 |
+
|
13 |
+
|
14 |
+
class SinusoidalPosEmb(nn.Module):
|
15 |
+
def __init__(self, dim):
|
16 |
+
super(SinusoidalPosEmb, self).__init__()
|
17 |
+
self.dim = dim
|
18 |
+
|
19 |
+
def forward(self, x, scale=1000):
|
20 |
+
if x.ndim < 1:
|
21 |
+
x = x.unsqueeze(0)
|
22 |
+
device = x.device
|
23 |
+
half_dim = self.dim // 2
|
24 |
+
emb = math.log(10000) / (half_dim - 1)
|
25 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
26 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
27 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
28 |
+
return emb
|
29 |
+
|
30 |
+
class VitsWNDecoder(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self,
|
33 |
+
in_channels,
|
34 |
+
out_channels,
|
35 |
+
hidden_channels,
|
36 |
+
kernel_size,
|
37 |
+
dilation_rate,
|
38 |
+
n_layers,
|
39 |
+
gin_channels=0,
|
40 |
+
pe_scale=1000
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
self.out_channels = out_channels
|
45 |
+
self.hidden_channels = hidden_channels
|
46 |
+
self.kernel_size = kernel_size
|
47 |
+
self.dilation_rate = dilation_rate
|
48 |
+
self.n_layers = n_layers
|
49 |
+
self.gin_channels = gin_channels
|
50 |
+
self.pe_scale = pe_scale
|
51 |
+
self.time_pos_emb = SinusoidalPosEmb(hidden_channels * 2)
|
52 |
+
dim = hidden_channels * 2
|
53 |
+
self.mlp = nn.Sequential(
|
54 |
+
nn.Linear(dim, dim * 4),
|
55 |
+
Mish(),
|
56 |
+
nn.Linear(dim * 4, dim)
|
57 |
+
)
|
58 |
+
|
59 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
60 |
+
self.enc = modules.WN(hidden_channels * 2,
|
61 |
+
kernel_size,
|
62 |
+
dilation_rate,
|
63 |
+
n_layers,
|
64 |
+
gin_channels=gin_channels)
|
65 |
+
self.proj = nn.Conv1d(hidden_channels * 2, out_channels, 1)
|
66 |
+
|
67 |
+
def forward(self, x, x_mask, mu, t, *args, **kwargs):
|
68 |
+
# x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
69 |
+
# 1).to(x.dtype)
|
70 |
+
t = self.time_pos_emb(t, scale=self.pe_scale)
|
71 |
+
t = self.mlp(t)
|
72 |
+
|
73 |
+
x = self.pre(x) * x_mask
|
74 |
+
mu = self.pre(mu)
|
75 |
+
x = torch.cat((x, mu), dim=1)
|
76 |
+
x = self.enc(x, x_mask, g=t)
|
77 |
+
stats = self.proj(x) * x_mask
|
78 |
+
|
79 |
+
return stats
|
pflow/models/components/wn_pflow_decoder.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
https://github.com/cantabile-kwok/VoiceFlow-TTS/blob/main/model/diffsinger.py#L51
|
3 |
+
This is the original implementation of the DiffSinger model.
|
4 |
+
It is a slightly modified WV which can be used for initial tests.
|
5 |
+
Will update this into original p-flow implementation later.
|
6 |
+
'''
|
7 |
+
import math
|
8 |
+
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch
|
11 |
+
from torch.nn import Conv1d, Linear
|
12 |
+
import math
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
class Mish(nn.Module):
|
17 |
+
def forward(self, x):
|
18 |
+
return x * torch.tanh(F.softplus(x))
|
19 |
+
|
20 |
+
|
21 |
+
class SinusoidalPosEmb(nn.Module):
|
22 |
+
def __init__(self, dim):
|
23 |
+
super(SinusoidalPosEmb, self).__init__()
|
24 |
+
self.dim = dim
|
25 |
+
|
26 |
+
def forward(self, x, scale=1000):
|
27 |
+
if x.ndim < 1:
|
28 |
+
x = x.unsqueeze(0)
|
29 |
+
device = x.device
|
30 |
+
half_dim = self.dim // 2
|
31 |
+
emb = math.log(10000) / (half_dim - 1)
|
32 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
33 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
34 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
35 |
+
return emb
|
36 |
+
|
37 |
+
|
38 |
+
class ResidualBlock(nn.Module):
|
39 |
+
def __init__(self, encoder_hidden, residual_channels, dilation):
|
40 |
+
super().__init__()
|
41 |
+
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
|
42 |
+
self.diffusion_projection = Linear(residual_channels, residual_channels)
|
43 |
+
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
44 |
+
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
|
45 |
+
|
46 |
+
def forward(self, x, conditioner, diffusion_step):
|
47 |
+
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
48 |
+
conditioner = self.conditioner_projection(conditioner)
|
49 |
+
y = x + diffusion_step
|
50 |
+
|
51 |
+
y = self.dilated_conv(y) + conditioner
|
52 |
+
|
53 |
+
gate, filter = torch.chunk(y, 2, dim=1)
|
54 |
+
y = torch.sigmoid(gate) * torch.tanh(filter)
|
55 |
+
|
56 |
+
y = self.output_projection(y)
|
57 |
+
residual, skip = torch.chunk(y, 2, dim=1)
|
58 |
+
return (x + residual) / math.sqrt(2.0), skip
|
59 |
+
|
60 |
+
class DiffSingerNet(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
in_dims=80,
|
64 |
+
residual_channels=256,
|
65 |
+
encoder_hidden=80,
|
66 |
+
dilation_cycle_length=1,
|
67 |
+
residual_layers=20,
|
68 |
+
pe_scale=1000
|
69 |
+
):
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.pe_scale = pe_scale
|
73 |
+
|
74 |
+
self.input_projection = Conv1d(in_dims, residual_channels, 1)
|
75 |
+
self.time_pos_emb = SinusoidalPosEmb(residual_channels)
|
76 |
+
dim = residual_channels
|
77 |
+
self.mlp = nn.Sequential(
|
78 |
+
nn.Linear(dim, dim * 4),
|
79 |
+
Mish(),
|
80 |
+
nn.Linear(dim * 4, dim)
|
81 |
+
)
|
82 |
+
self.residual_layers = nn.ModuleList([
|
83 |
+
ResidualBlock(encoder_hidden, residual_channels, 2 ** (i % dilation_cycle_length))
|
84 |
+
for i in range(residual_layers)
|
85 |
+
])
|
86 |
+
self.skip_projection = Conv1d(residual_channels, residual_channels, 1)
|
87 |
+
self.output_projection = Conv1d(residual_channels, in_dims, 1)
|
88 |
+
nn.init.zeros_(self.output_projection.weight)
|
89 |
+
|
90 |
+
def forward(self, spec, spec_mask, mu, t, *args, **kwargs):
|
91 |
+
"""
|
92 |
+
:param spec: [B, M, T]
|
93 |
+
:param t: [B, ]
|
94 |
+
:param mu: [B, M, T]
|
95 |
+
:return:
|
96 |
+
"""
|
97 |
+
# x = spec[:, 0]
|
98 |
+
x = spec
|
99 |
+
x = self.input_projection(x) # x [B, residual_channel, T]
|
100 |
+
|
101 |
+
x = F.relu(x)
|
102 |
+
|
103 |
+
t = self.time_pos_emb(t, scale=self.pe_scale)
|
104 |
+
t = self.mlp(t)
|
105 |
+
|
106 |
+
cond = mu
|
107 |
+
|
108 |
+
skip = []
|
109 |
+
for layer_id, layer in enumerate(self.residual_layers):
|
110 |
+
x, skip_connection = layer(x, cond, t)
|
111 |
+
skip.append(skip_connection)
|
112 |
+
|
113 |
+
x = torch.sum(torch.stack(skip), dim=0) / math.sqrt(len(self.residual_layers))
|
114 |
+
x = self.skip_projection(x)
|
115 |
+
x = F.relu(x)
|
116 |
+
x = self.output_projection(x) # [B, M, T]
|
117 |
+
return x * spec_mask
|
pflow/models/pflow_tts.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime as dt
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
from pflow.models.baselightningmodule import BaseLightningClass
|
10 |
+
from pflow.models.components.flow_matching import CFM
|
11 |
+
from pflow.models.components.speech_prompt_encoder import TextEncoder
|
12 |
+
from pflow.utils.model import (
|
13 |
+
denormalize,
|
14 |
+
duration_loss,
|
15 |
+
fix_len_compatibility,
|
16 |
+
generate_path,
|
17 |
+
sequence_mask,
|
18 |
+
)
|
19 |
+
from pflow.models.components import commons
|
20 |
+
from pflow.models.components.aligner import Aligner, ForwardSumLoss, BinLoss
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
class pflowTTS(BaseLightningClass): #
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
n_vocab,
|
28 |
+
n_feats,
|
29 |
+
encoder,
|
30 |
+
decoder,
|
31 |
+
cfm,
|
32 |
+
data_statistics,
|
33 |
+
prompt_size=264,
|
34 |
+
optimizer=None,
|
35 |
+
scheduler=None,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.save_hyperparameters(logger=False)
|
41 |
+
|
42 |
+
self.n_vocab = n_vocab
|
43 |
+
self.n_feats = n_feats
|
44 |
+
self.prompt_size = prompt_size
|
45 |
+
speech_in_channels = n_feats
|
46 |
+
|
47 |
+
self.encoder = TextEncoder(
|
48 |
+
encoder.encoder_type,
|
49 |
+
encoder.encoder_params,
|
50 |
+
encoder.duration_predictor_params,
|
51 |
+
n_vocab,
|
52 |
+
speech_in_channels,
|
53 |
+
)
|
54 |
+
|
55 |
+
# self.aligner = Aligner(
|
56 |
+
# dim_in=encoder.encoder_params.n_feats,
|
57 |
+
# dim_hidden=encoder.encoder_params.n_feats,
|
58 |
+
# attn_channels=encoder.encoder_params.n_feats,
|
59 |
+
# )
|
60 |
+
|
61 |
+
# self.aligner_loss = ForwardSumLoss()
|
62 |
+
# self.bin_loss = BinLoss()
|
63 |
+
# self.aligner_bin_loss_weight = 0.0
|
64 |
+
|
65 |
+
self.decoder = CFM(
|
66 |
+
in_channels=encoder.encoder_params.n_feats,
|
67 |
+
out_channel=encoder.encoder_params.n_feats,
|
68 |
+
cfm_params=cfm,
|
69 |
+
decoder_params=decoder,
|
70 |
+
)
|
71 |
+
|
72 |
+
self.proj_prompt = torch.nn.Conv1d(encoder.encoder_params.n_channels, self.n_feats, 1)
|
73 |
+
|
74 |
+
self.update_data_statistics(data_statistics)
|
75 |
+
|
76 |
+
@torch.inference_mode()
|
77 |
+
def synthesise(self, x, x_lengths, prompt, n_timesteps, temperature=1.0, length_scale=1.0, guidance_scale=0.0):
|
78 |
+
|
79 |
+
# For RTF computation
|
80 |
+
t = dt.datetime.now()
|
81 |
+
assert prompt is not None, "Prompt must be provided for synthesis"
|
82 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
83 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, prompt)
|
84 |
+
w = torch.exp(logw) * x_mask
|
85 |
+
w_ceil = torch.ceil(w) * length_scale
|
86 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
87 |
+
y_max_length = y_lengths.max()
|
88 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
89 |
+
|
90 |
+
# Using obtained durations `w` construct alignment map `attn`
|
91 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
92 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
93 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
94 |
+
|
95 |
+
# Align encoded text and get mu_y
|
96 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
97 |
+
mu_y = mu_y.transpose(1, 2)
|
98 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
99 |
+
|
100 |
+
# Generate sample tracing the probability flow
|
101 |
+
decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, guidance_scale=guidance_scale)
|
102 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
103 |
+
|
104 |
+
t = (dt.datetime.now() - t).total_seconds()
|
105 |
+
rtf = t * 22050 / (decoder_outputs.shape[-1] * 256)
|
106 |
+
|
107 |
+
return {
|
108 |
+
"encoder_outputs": encoder_outputs,
|
109 |
+
"decoder_outputs": decoder_outputs,
|
110 |
+
"attn": attn[:, :, :y_max_length],
|
111 |
+
"mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std),
|
112 |
+
"mel_lengths": y_lengths,
|
113 |
+
"rtf": rtf,
|
114 |
+
}
|
115 |
+
|
116 |
+
def forward(self, x, x_lengths, y, y_lengths, prompt=None, cond=None, **kwargs):
|
117 |
+
if prompt is None:
|
118 |
+
prompt_slice, ids_slice = commons.rand_slice_segments(
|
119 |
+
y, y_lengths, self.prompt_size
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
prompt_slice = prompt
|
123 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, prompt_slice)
|
124 |
+
|
125 |
+
y_max_length = y.shape[-1]
|
126 |
+
|
127 |
+
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
128 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
129 |
+
|
130 |
+
with torch.no_grad():
|
131 |
+
# negative cross-entropy
|
132 |
+
s_p_sq_r = torch.ones_like(mu_x) # [b, d, t]
|
133 |
+
# s_p_sq_r = torch.exp(-2 * logx)
|
134 |
+
neg_cent1 = torch.sum(
|
135 |
+
-0.5 * math.log(2 * math.pi)- torch.zeros_like(mu_x), [1], keepdim=True
|
136 |
+
)
|
137 |
+
# neg_cent1 = torch.sum(
|
138 |
+
# -0.5 * math.log(2 * math.pi) - logx, [1], keepdim=True
|
139 |
+
# ) # [b, 1, t_s]
|
140 |
+
neg_cent2 = torch.einsum("bdt, bds -> bts", -0.5 * (y**2), s_p_sq_r)
|
141 |
+
neg_cent3 = torch.einsum("bdt, bds -> bts", y, (mu_x * s_p_sq_r))
|
142 |
+
neg_cent4 = torch.sum(
|
143 |
+
-0.5 * (mu_x**2) * s_p_sq_r, [1], keepdim=True
|
144 |
+
)
|
145 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
146 |
+
|
147 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
148 |
+
from pflow.utils.monotonic_align import maximum_path
|
149 |
+
attn = (
|
150 |
+
maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
151 |
+
)
|
152 |
+
|
153 |
+
logw_ = torch.log(1e-8 + attn.sum(2)) * x_mask
|
154 |
+
dur_loss = duration_loss(logw, logw_, x_lengths)
|
155 |
+
|
156 |
+
# aln_hard, aln_soft, aln_log, aln_mask = self.aligner(
|
157 |
+
# mu_x.transpose(1,2), x_mask, y, y_mask
|
158 |
+
# )
|
159 |
+
# attn = aln_mask.transpose(1,2).unsqueeze(1)
|
160 |
+
# align_loss = self.aligner_loss(aln_log, x_lengths, y_lengths)
|
161 |
+
# if self.aligner_bin_loss_weight > 0.:
|
162 |
+
# align_bin_loss = self.bin_loss(aln_mask, aln_log, x_lengths) * self.aligner_bin_loss_weight
|
163 |
+
# align_loss = align_loss + align_bin_loss
|
164 |
+
# dur_loss = F.l1_loss(logw, attn.sum(2))
|
165 |
+
# dur_loss = dur_loss + align_loss
|
166 |
+
|
167 |
+
# Align encoded text with mel-spectrogram and get mu_y segment
|
168 |
+
attn = attn.squeeze(1).transpose(1,2)
|
169 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
170 |
+
mu_y = mu_y.transpose(1, 2)
|
171 |
+
|
172 |
+
y_loss_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
173 |
+
if prompt is None:
|
174 |
+
for i in range(y.size(0)):
|
175 |
+
y_loss_mask[i,:,ids_slice[i]:ids_slice[i] + self.prompt_size] = False
|
176 |
+
# Compute loss of the decoder
|
177 |
+
diff_loss, _ = self.decoder.compute_loss(x1=y.detach(), mask=y_mask, mu=mu_y, cond=cond, loss_mask=y_loss_mask)
|
178 |
+
|
179 |
+
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_loss_mask)
|
180 |
+
prior_loss = prior_loss / (torch.sum(y_loss_mask) * self.n_feats)
|
181 |
+
|
182 |
+
return dur_loss, prior_loss, diff_loss, attn
|
pflow/text/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from pflow.text import cleaners
|
3 |
+
from pflow.text.symbols import symbols
|
4 |
+
|
5 |
+
# Mappings from symbol to numeric ID and vice versa:
|
6 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
7 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)} # pylint: disable=unnecessary-comprehension
|
8 |
+
|
9 |
+
|
10 |
+
def text_to_sequence(text, cleaner_names):
|
11 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
12 |
+
Args:
|
13 |
+
text: string to convert to a sequence
|
14 |
+
cleaner_names: names of the cleaner functions to run the text through
|
15 |
+
Returns:
|
16 |
+
List of integers corresponding to the symbols in the text
|
17 |
+
"""
|
18 |
+
sequence = []
|
19 |
+
|
20 |
+
clean_text = _clean_text(text, cleaner_names)
|
21 |
+
for symbol in clean_text:
|
22 |
+
symbol_id = _symbol_to_id[symbol]
|
23 |
+
sequence += [symbol_id]
|
24 |
+
return sequence
|
25 |
+
|
26 |
+
|
27 |
+
def cleaned_text_to_sequence(cleaned_text):
|
28 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
29 |
+
Args:
|
30 |
+
text: string to convert to a sequence
|
31 |
+
Returns:
|
32 |
+
List of integers corresponding to the symbols in the text
|
33 |
+
"""
|
34 |
+
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
35 |
+
return sequence
|
36 |
+
|
37 |
+
|
38 |
+
def sequence_to_text(sequence):
|
39 |
+
"""Converts a sequence of IDs back to a string"""
|
40 |
+
result = ""
|
41 |
+
for symbol_id in sequence:
|
42 |
+
s = _id_to_symbol[symbol_id]
|
43 |
+
result += s
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def _clean_text(text, cleaner_names):
|
48 |
+
for name in cleaner_names:
|
49 |
+
cleaner = getattr(cleaners, name)
|
50 |
+
if not cleaner:
|
51 |
+
raise Exception("Unknown cleaner: %s" % name)
|
52 |
+
text = cleaner(text)
|
53 |
+
return text
|
pflow/text/cleaners.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pflow.text.textnormalizer import norm
|
2 |
+
from ukrainian_word_stress import Stressifier
|
3 |
+
import regex
|
4 |
+
import re
|
5 |
+
from ipa_uk import ipa
|
6 |
+
stressify = Stressifier()
|
7 |
+
|
8 |
+
|
9 |
+
_whitespace_re = re.compile(r"\s+")
|
10 |
+
def collapse_whitespace(text):
|
11 |
+
return re.sub(_whitespace_re, " ", text)
|
12 |
+
|
13 |
+
|
14 |
+
def ukr_cleaners(text):
|
15 |
+
text = collapse_whitespace(text)
|
16 |
+
text = norm(text).lower()
|
17 |
+
|
18 |
+
text = regex.sub(r'[^\p{L}\p{N}\?\!\,\.\-\: ]', '', text)
|
19 |
+
return ipa(stressify(text), False)
|
pflow/text/numbers.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
import re
|
4 |
+
|
5 |
+
import inflect
|
6 |
+
|
7 |
+
_inflect = inflect.engine()
|
8 |
+
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
9 |
+
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
10 |
+
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
11 |
+
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
12 |
+
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
13 |
+
_number_re = re.compile(r"[0-9]+")
|
14 |
+
|
15 |
+
|
16 |
+
def _remove_commas(m):
|
17 |
+
return m.group(1).replace(",", "")
|
18 |
+
|
19 |
+
|
20 |
+
def _expand_decimal_point(m):
|
21 |
+
return m.group(1).replace(".", " point ")
|
22 |
+
|
23 |
+
|
24 |
+
def _expand_dollars(m):
|
25 |
+
match = m.group(1)
|
26 |
+
parts = match.split(".")
|
27 |
+
if len(parts) > 2:
|
28 |
+
return match + " dollars"
|
29 |
+
dollars = int(parts[0]) if parts[0] else 0
|
30 |
+
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
31 |
+
if dollars and cents:
|
32 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
33 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
34 |
+
return f"{dollars} {dollar_unit}, {cents} {cent_unit}"
|
35 |
+
elif dollars:
|
36 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
37 |
+
return f"{dollars} {dollar_unit}"
|
38 |
+
elif cents:
|
39 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
40 |
+
return f"{cents} {cent_unit}"
|
41 |
+
else:
|
42 |
+
return "zero dollars"
|
43 |
+
|
44 |
+
|
45 |
+
def _expand_ordinal(m):
|
46 |
+
return _inflect.number_to_words(m.group(0))
|
47 |
+
|
48 |
+
|
49 |
+
def _expand_number(m):
|
50 |
+
num = int(m.group(0))
|
51 |
+
if num > 1000 and num < 3000:
|
52 |
+
if num == 2000:
|
53 |
+
return "two thousand"
|
54 |
+
elif num > 2000 and num < 2010:
|
55 |
+
return "two thousand " + _inflect.number_to_words(num % 100)
|
56 |
+
elif num % 100 == 0:
|
57 |
+
return _inflect.number_to_words(num // 100) + " hundred"
|
58 |
+
else:
|
59 |
+
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
|
60 |
+
else:
|
61 |
+
return _inflect.number_to_words(num, andword="")
|
62 |
+
|
63 |
+
|
64 |
+
def normalize_numbers(text):
|
65 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
66 |
+
text = re.sub(_pounds_re, r"\1 pounds", text)
|
67 |
+
text = re.sub(_dollars_re, _expand_dollars, text)
|
68 |
+
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
69 |
+
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
70 |
+
text = re.sub(_number_re, _expand_number, text)
|
71 |
+
return text
|
pflow/text/symbols.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron
|
2 |
+
|
3 |
+
Defines the set of symbols used in text input to the model.
|
4 |
+
"""
|
5 |
+
_pad = "_"
|
6 |
+
_punctuation = '-´;:,.!?¡¿—…"«»“” '
|
7 |
+
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
8 |
+
_letters_ipa = (
|
9 |
+
"éýíó'̯'͡ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
# Export all symbols:
|
14 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
15 |
+
|
16 |
+
# Special symbol ids
|
17 |
+
SPACE_ID = symbols.index(" ")
|
pflow/text/textnormalizer.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import regex
|
2 |
+
from num2words import num2words
|
3 |
+
import unicodedata
|
4 |
+
|
5 |
+
simple_replacements = {
|
6 |
+
'№' : 'номер',
|
7 |
+
'§': 'номер'
|
8 |
+
}
|
9 |
+
|
10 |
+
masc_replacments_dict = {
|
11 |
+
'%':['відсоток', 'відсотки', 'відсотків'],
|
12 |
+
'мм': ['міліметр', 'міліметри', 'міліметрів'],
|
13 |
+
'см': ['сантиметр', 'сантиметри', 'сантиметрів'],
|
14 |
+
'мм': ['міліметр', 'міліметри', 'міліметрів'],
|
15 |
+
# 'м': ['метр', 'метри', 'метрів'],
|
16 |
+
'км': ['кілометр', 'кілометри', 'кілометрів'],
|
17 |
+
'гц': ['герц', 'герци', 'герців'],
|
18 |
+
'кгц': ['кілогерц', 'кілогерци', 'кілогерців'],
|
19 |
+
'мгц': ['мегагерц', 'мегагерци', 'мегагерців'],
|
20 |
+
'ггц': ['гігагерц', 'гігагерци', 'гігагерців'],
|
21 |
+
'вт': ['ват', 'вати', 'ватів'],
|
22 |
+
'квт': ['кіловат', 'кіловати', 'кіловатів'],
|
23 |
+
'мвт': ['мегават', 'мегавати', 'мегаватів'],
|
24 |
+
'гвт': ['гігават', 'гігавати', 'гігаватів'],
|
25 |
+
'дж': ['джоуль', 'джоулі', 'джоулів'],
|
26 |
+
'кдж': ['кілоджоуль', 'кілоджоулі', 'кілоджоулів'],
|
27 |
+
'мдж': ['мегаджоуль', 'мегаджоулі', 'мегаджоулів'],
|
28 |
+
'см2': ['сантиметр квадратний', 'сантиметри квадратні', 'сантиметрів квадратних'],
|
29 |
+
'м2': ['метр квадратний', 'метри квадратні', 'метрів квадратних'],
|
30 |
+
'м2': ['кілометр квадратний', 'кілометри квадратні', 'кілометрів квадратних'],
|
31 |
+
'$': ['долар', 'долари', 'доларів'],
|
32 |
+
'€': ['євро', 'євро', 'євро'],
|
33 |
+
}
|
34 |
+
|
35 |
+
fem_replacments_dict = {
|
36 |
+
'кал': ['калорія', 'калорії', 'калорій'],
|
37 |
+
'ккал': ['кілокалорія', 'кілокалорії', 'кілокалорій'],
|
38 |
+
'грн': ['гривня', 'гривні', 'гривень'],
|
39 |
+
'грв': ['гривня', 'гривні', 'гривень'],
|
40 |
+
'₴': ['гривня', 'гривні', 'гривень'],
|
41 |
+
}
|
42 |
+
|
43 |
+
neu_replacments_dict = {
|
44 |
+
'€': ['євро', 'євро', 'євро'],
|
45 |
+
}
|
46 |
+
|
47 |
+
all_replacments_keys = list(masc_replacments_dict.keys()) + list(fem_replacments_dict.keys()) + list(neu_replacments_dict.keys())
|
48 |
+
|
49 |
+
#Ordinal types
|
50 |
+
#Називний
|
51 |
+
ordinal_nominative_masculine_cases = ('й','ий')
|
52 |
+
ordinal_nominative_feminine_cases = ('a','ша', 'я')
|
53 |
+
ordinal_nominative_neuter_cases = ('е',)
|
54 |
+
|
55 |
+
#Родовий
|
56 |
+
ordinal_genitive_masculine_case = ('го','о',)
|
57 |
+
ordinal_genitive_feminine_case = ('ї', 'ої')
|
58 |
+
|
59 |
+
|
60 |
+
#Давальний
|
61 |
+
ordinal_dative_masculine_case = ('му',)
|
62 |
+
ordinal_dative_feminine_case = ('й','ій')
|
63 |
+
|
64 |
+
#Знахідний
|
65 |
+
ordinal_accusative_masculine_case = ordinal_genitive_masculine_case
|
66 |
+
ordinal_accusative_feminine_case = ('у',)
|
67 |
+
|
68 |
+
#Орудний
|
69 |
+
ordinal_instrumental_masculine_case = ('им', 'ім')
|
70 |
+
ordinal_instrumental_feminine_case = ('ю')
|
71 |
+
|
72 |
+
|
73 |
+
#Місцевий
|
74 |
+
# ordinal_locative_masculine_case = ordinal_dative_masculine_case
|
75 |
+
# ordinal_locative_feminine_case = ordinal_dative_feminine_case
|
76 |
+
|
77 |
+
numcases_r = regex.compile(rf'((?:^|\s)(\d+)\s*(\-?)(([^\d,]*?)|(\-\.+))(?:\.|,|:|-)?)(\s+[^,.:\-]|$)', regex.IGNORECASE, regex.UNICODE)
|
78 |
+
|
79 |
+
print(numcases_r)
|
80 |
+
cardinal_genitive_endings = ('а', 'e', 'є', 'й')
|
81 |
+
ordinal_genitive_cases = ('року',)
|
82 |
+
|
83 |
+
def number_form(number):
|
84 |
+
if number[-1] == "1":
|
85 |
+
return 0
|
86 |
+
elif number[-1] in ("2", "3", "4"):
|
87 |
+
return 1
|
88 |
+
else:
|
89 |
+
return 2
|
90 |
+
|
91 |
+
def replace_cases(number, dash, case='', next_word=''):
|
92 |
+
print(f'{number}, {dash}, {case}, {next_word}')
|
93 |
+
gender = 'masculine'
|
94 |
+
m_case = 'nominative'
|
95 |
+
to = 'ordinal'
|
96 |
+
repl = ''
|
97 |
+
if not dash:
|
98 |
+
if case in all_replacments_keys:
|
99 |
+
if case in masc_replacments_dict.keys():
|
100 |
+
repl = masc_replacments_dict.get(case)[number_form(number)]
|
101 |
+
gender = 'masculine'
|
102 |
+
elif case in fem_replacments_dict.keys():
|
103 |
+
repl = fem_replacments_dict.get(case)[number_form(number)]
|
104 |
+
gender = 'feminine'
|
105 |
+
elif case in neu_replacments_dict.keys():
|
106 |
+
repl = neu_replacments_dict.get(case)[number_form(number)]
|
107 |
+
gender = 'neuter'
|
108 |
+
to = 'cardinal'
|
109 |
+
else:
|
110 |
+
if len(case) < 3 and case and case[-1] in cardinal_genitive_endings:
|
111 |
+
m_case = 'genitive'
|
112 |
+
gender='masculine'
|
113 |
+
to = 'cardinal'
|
114 |
+
elif case in ordinal_genitive_cases:
|
115 |
+
to = 'ordinal'
|
116 |
+
m_case = 'genitive'
|
117 |
+
repl = case
|
118 |
+
else:
|
119 |
+
to = 'cardinal'
|
120 |
+
repl = case
|
121 |
+
|
122 |
+
else:
|
123 |
+
if case in ordinal_nominative_masculine_cases:
|
124 |
+
m_case = 'nominative'
|
125 |
+
gender = 'masculine'
|
126 |
+
elif case in ordinal_nominative_feminine_cases:
|
127 |
+
m_case = 'nominative'
|
128 |
+
gender = 'feminine'
|
129 |
+
elif case in ordinal_nominative_neuter_cases:
|
130 |
+
m_case = 'nominative'
|
131 |
+
gender = 'neuter'
|
132 |
+
elif case in ordinal_genitive_masculine_case:
|
133 |
+
m_case = 'genitive'
|
134 |
+
gender = 'masculine'
|
135 |
+
elif case in ordinal_genitive_feminine_case:
|
136 |
+
m_case = 'genitive'
|
137 |
+
gender = 'feminine'
|
138 |
+
elif case in ordinal_dative_masculine_case:
|
139 |
+
m_case = 'dative'
|
140 |
+
gender = 'masculine'
|
141 |
+
elif case in ordinal_dative_feminine_case:
|
142 |
+
m_case = 'dative'
|
143 |
+
gender = 'feminine'
|
144 |
+
elif case in ordinal_accusative_feminine_case:
|
145 |
+
m_case = 'accusative'
|
146 |
+
gender = 'feminine'
|
147 |
+
elif case in ordinal_instrumental_masculine_case:
|
148 |
+
m_case = 'instrumental'
|
149 |
+
gender = 'masculine'
|
150 |
+
elif case in ordinal_instrumental_feminine_case:
|
151 |
+
m_case = 'instrumental'
|
152 |
+
gender = 'feminine'
|
153 |
+
else:
|
154 |
+
if case and case[-1] in cardinal_genitive_endings:
|
155 |
+
m_case = 'genitive'
|
156 |
+
gender='masculine'
|
157 |
+
to = 'cardinal'
|
158 |
+
repl = case
|
159 |
+
else:
|
160 |
+
print(f'UNKNOWN CASE {number}-{case}')
|
161 |
+
|
162 |
+
return_str = num2words(number, to=to, lang='uk', case=m_case, gender=gender)
|
163 |
+
if repl:
|
164 |
+
return_str += ' ' + repl
|
165 |
+
if not next_word or (next_word and next_word.strip().isupper()):
|
166 |
+
return_str += '.'
|
167 |
+
return return_str
|
168 |
+
|
169 |
+
def norm(text):
|
170 |
+
text = regex.sub(r'[\t\n]', ' ', text)
|
171 |
+
text = regex.sub(rf"[{''.join(simple_replacements.keys())}]", lambda x: f' {simple_replacements[x.group()]} ', text)
|
172 |
+
text = regex.sub(r"(\d)\s+(\d)", r"\1\2", text)
|
173 |
+
text = regex.sub(r'\s+', ' ', text)
|
174 |
+
text = unicodedata.normalize('NFC', text)
|
175 |
+
matches = numcases_r.finditer(text)
|
176 |
+
pos = 0
|
177 |
+
new_text = ''
|
178 |
+
for m in matches:
|
179 |
+
repl = replace_cases(m.group(2), m.group(3), m.group(4), m.group(7))
|
180 |
+
new_text += text[pos:m.start(0)]+ ' ' + repl
|
181 |
+
pos = m.end(1)
|
182 |
+
new_text += text[pos:]
|
183 |
+
return new_text.strip()
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
#1-го квітня, на 1-му поверсі Яринка загубила 2грн але знайшла 5€. Але її 4-річна сестричка забрала 50% її знахідки.
|
188 |
+
#Також 2003 року щось там сталося і 40-річний чоловік помер. Його знайшли через 3 години.
|
189 |
+
|
190 |
+
#01:51:37.250 -> 01:51:44.650: Серед міленіалів цей показник становить 39%, серед покоління X – 30%,
|
191 |
+
#39
|
192 |
+
#30
|
193 |
+
#MATCHED: серед міленіалів цей показник становить тридцять девять , серед покоління Х - тридцять ,
|
194 |
+
#Skipped because contains inapropirate characters
|
195 |
+
|
196 |
+
#05:28:52.350 -> 05:29:00.000: 2016 рік завершився з чистими збитками 1,2 мільярди доларів США.
|
197 |
+
#2016
|
198 |
+
#MATCHED: дві тисячі шістнадцять рік завершився з чистими збитками 1,2 млрд доларів США.
|
pflow/utils/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pflow.utils.instantiators import instantiate_callbacks, instantiate_loggers
|
2 |
+
from pflow.utils.logging_utils import log_hyperparameters
|
3 |
+
from pflow.utils.pylogger import get_pylogger
|
4 |
+
from pflow.utils.rich_utils import enforce_tags, print_config_tree
|
5 |
+
from pflow.utils.utils import extras, get_metric_value, task_wrapper
|
pflow/utils/audio.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.utils.data
|
4 |
+
from librosa.filters import mel as librosa_mel_fn
|
5 |
+
from scipy.io.wavfile import read
|
6 |
+
|
7 |
+
MAX_WAV_VALUE = 32768.0
|
8 |
+
|
9 |
+
|
10 |
+
def load_wav(full_path):
|
11 |
+
sampling_rate, data = read(full_path)
|
12 |
+
return data, sampling_rate
|
13 |
+
|
14 |
+
|
15 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
16 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_decompression(x, C=1):
|
20 |
+
return np.exp(x) / C
|
21 |
+
|
22 |
+
|
23 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
24 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
25 |
+
|
26 |
+
|
27 |
+
def dynamic_range_decompression_torch(x, C=1):
|
28 |
+
return torch.exp(x) / C
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_compression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
def spectral_de_normalize_torch(magnitudes):
|
37 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
38 |
+
return output
|
39 |
+
|
40 |
+
|
41 |
+
mel_basis = {}
|
42 |
+
hann_window = {}
|
43 |
+
|
44 |
+
|
45 |
+
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
46 |
+
if torch.min(y) < -1.0:
|
47 |
+
print("min value is ", torch.min(y))
|
48 |
+
if torch.max(y) > 1.0:
|
49 |
+
print("max value is ", torch.max(y))
|
50 |
+
|
51 |
+
global mel_basis, hann_window # pylint: disable=global-statement
|
52 |
+
if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
|
53 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
54 |
+
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
55 |
+
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
56 |
+
|
57 |
+
y = torch.nn.functional.pad(
|
58 |
+
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
59 |
+
)
|
60 |
+
y = y.squeeze(1)
|
61 |
+
|
62 |
+
spec = torch.view_as_real(
|
63 |
+
torch.stft(
|
64 |
+
y,
|
65 |
+
n_fft,
|
66 |
+
hop_length=hop_size,
|
67 |
+
win_length=win_size,
|
68 |
+
window=hann_window[str(y.device)],
|
69 |
+
center=center,
|
70 |
+
pad_mode="reflect",
|
71 |
+
normalized=False,
|
72 |
+
onesided=True,
|
73 |
+
return_complex=True,
|
74 |
+
)
|
75 |
+
)
|
76 |
+
|
77 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
78 |
+
|
79 |
+
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
|
80 |
+
spec = spectral_normalize_torch(spec)
|
81 |
+
|
82 |
+
return spec
|
pflow/utils/generate_data_statistics.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
|
3 |
+
when needed.
|
4 |
+
|
5 |
+
Parameters from hparam.py will be used
|
6 |
+
"""
|
7 |
+
import os
|
8 |
+
|
9 |
+
import sys
|
10 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), "../.."))
|
11 |
+
|
12 |
+
import argparse
|
13 |
+
import json
|
14 |
+
import sys
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
import rootutils
|
18 |
+
import torch
|
19 |
+
from hydra import compose, initialize
|
20 |
+
from omegaconf import open_dict
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
|
23 |
+
from pflow.data.text_mel_datamodule import TextMelDataModule
|
24 |
+
from pflow.utils.logging_utils import pylogger
|
25 |
+
|
26 |
+
log = pylogger.get_pylogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
def compute_data_statistics(data_loader: torch.utils.data.DataLoader, out_channels: int):
|
30 |
+
"""Generate data mean and standard deviation helpful in data normalisation
|
31 |
+
|
32 |
+
Args:
|
33 |
+
data_loader (torch.utils.data.Dataloader): _description_
|
34 |
+
out_channels (int): mel spectrogram channels
|
35 |
+
"""
|
36 |
+
total_mel_sum = 0
|
37 |
+
total_mel_sq_sum = 0
|
38 |
+
total_mel_len = 0
|
39 |
+
|
40 |
+
for batch in tqdm(data_loader, leave=False):
|
41 |
+
mels = batch["y"]
|
42 |
+
mel_lengths = batch["y_lengths"]
|
43 |
+
|
44 |
+
total_mel_len += torch.sum(mel_lengths)
|
45 |
+
total_mel_sum += torch.sum(mels)
|
46 |
+
total_mel_sq_sum += torch.sum(torch.pow(mels, 2))
|
47 |
+
|
48 |
+
data_mean = total_mel_sum / (total_mel_len * out_channels)
|
49 |
+
data_std = torch.sqrt((total_mel_sq_sum / (total_mel_len * out_channels)) - torch.pow(data_mean, 2))
|
50 |
+
|
51 |
+
return {"mel_mean": data_mean.item(), "mel_std": data_std.item()}
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
parser = argparse.ArgumentParser()
|
56 |
+
|
57 |
+
parser.add_argument(
|
58 |
+
"-i",
|
59 |
+
"--input-config",
|
60 |
+
type=str,
|
61 |
+
default="vctk.yaml",
|
62 |
+
help="The name of the yaml config file under configs/data",
|
63 |
+
)
|
64 |
+
|
65 |
+
parser.add_argument(
|
66 |
+
"-b",
|
67 |
+
"--batch-size",
|
68 |
+
type=int,
|
69 |
+
default="256",
|
70 |
+
help="Can have increased batch size for faster computation",
|
71 |
+
)
|
72 |
+
|
73 |
+
parser.add_argument(
|
74 |
+
"-f",
|
75 |
+
"--force",
|
76 |
+
action="store_true",
|
77 |
+
default=False,
|
78 |
+
required=False,
|
79 |
+
help="force overwrite the file",
|
80 |
+
)
|
81 |
+
args = parser.parse_args()
|
82 |
+
output_file = Path(args.input_config).with_suffix(".json")
|
83 |
+
|
84 |
+
if os.path.exists(output_file) and not args.force:
|
85 |
+
print("File already exists. Use -f to force overwrite")
|
86 |
+
sys.exit(1)
|
87 |
+
|
88 |
+
with initialize(version_base="1.3", config_path="../../configs/data"):
|
89 |
+
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
|
90 |
+
|
91 |
+
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
|
92 |
+
|
93 |
+
with open_dict(cfg):
|
94 |
+
del cfg["hydra"]
|
95 |
+
del cfg["_target_"]
|
96 |
+
cfg["data_statistics"] = None
|
97 |
+
cfg["seed"] = 1234
|
98 |
+
cfg["batch_size"] = args.batch_size
|
99 |
+
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
100 |
+
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
101 |
+
|
102 |
+
text_mel_datamodule = TextMelDataModule(**cfg)
|
103 |
+
text_mel_datamodule.setup()
|
104 |
+
data_loader = text_mel_datamodule.train_dataloader()
|
105 |
+
log.info("Dataloader loaded! Now computing stats...")
|
106 |
+
params = compute_data_statistics(data_loader, cfg["n_feats"])
|
107 |
+
print(params)
|
108 |
+
json.dump(
|
109 |
+
params,
|
110 |
+
open(output_file, "w"),
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
main()
|
pflow/utils/instantiators.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import hydra
|
4 |
+
from lightning import Callback
|
5 |
+
from lightning.pytorch.loggers import Logger
|
6 |
+
from omegaconf import DictConfig
|
7 |
+
|
8 |
+
from pflow.utils import pylogger
|
9 |
+
|
10 |
+
log = pylogger.get_pylogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def instantiate_callbacks(callbacks_cfg: DictConfig) -> List[Callback]:
|
14 |
+
"""Instantiates callbacks from config.
|
15 |
+
|
16 |
+
:param callbacks_cfg: A DictConfig object containing callback configurations.
|
17 |
+
:return: A list of instantiated callbacks.
|
18 |
+
"""
|
19 |
+
callbacks: List[Callback] = []
|
20 |
+
|
21 |
+
if not callbacks_cfg:
|
22 |
+
log.warning("No callback configs found! Skipping..")
|
23 |
+
return callbacks
|
24 |
+
|
25 |
+
if not isinstance(callbacks_cfg, DictConfig):
|
26 |
+
raise TypeError("Callbacks config must be a DictConfig!")
|
27 |
+
|
28 |
+
for _, cb_conf in callbacks_cfg.items():
|
29 |
+
if isinstance(cb_conf, DictConfig) and "_target_" in cb_conf:
|
30 |
+
log.info(f"Instantiating callback <{cb_conf._target_}>") # pylint: disable=protected-access
|
31 |
+
callbacks.append(hydra.utils.instantiate(cb_conf))
|
32 |
+
|
33 |
+
return callbacks
|
34 |
+
|
35 |
+
|
36 |
+
def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
|
37 |
+
"""Instantiates loggers from config.
|
38 |
+
|
39 |
+
:param logger_cfg: A DictConfig object containing logger configurations.
|
40 |
+
:return: A list of instantiated loggers.
|
41 |
+
"""
|
42 |
+
logger: List[Logger] = []
|
43 |
+
|
44 |
+
if not logger_cfg:
|
45 |
+
log.warning("No logger configs found! Skipping...")
|
46 |
+
return logger
|
47 |
+
|
48 |
+
if not isinstance(logger_cfg, DictConfig):
|
49 |
+
raise TypeError("Logger config must be a DictConfig!")
|
50 |
+
|
51 |
+
for _, lg_conf in logger_cfg.items():
|
52 |
+
if isinstance(lg_conf, DictConfig) and "_target_" in lg_conf:
|
53 |
+
log.info(f"Instantiating logger <{lg_conf._target_}>") # pylint: disable=protected-access
|
54 |
+
logger.append(hydra.utils.instantiate(lg_conf))
|
55 |
+
|
56 |
+
return logger
|
pflow/utils/logging_utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict
|
2 |
+
|
3 |
+
from lightning.pytorch.utilities import rank_zero_only
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
|
6 |
+
from pflow.utils import pylogger
|
7 |
+
|
8 |
+
log = pylogger.get_pylogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
@rank_zero_only
|
12 |
+
def log_hyperparameters(object_dict: Dict[str, Any]) -> None:
|
13 |
+
"""Controls which config parts are saved by Lightning loggers.
|
14 |
+
|
15 |
+
Additionally saves:
|
16 |
+
- Number of model parameters
|
17 |
+
|
18 |
+
:param object_dict: A dictionary containing the following objects:
|
19 |
+
- `"cfg"`: A DictConfig object containing the main config.
|
20 |
+
- `"model"`: The Lightning model.
|
21 |
+
- `"trainer"`: The Lightning trainer.
|
22 |
+
"""
|
23 |
+
hparams = {}
|
24 |
+
|
25 |
+
cfg = OmegaConf.to_container(object_dict["cfg"])
|
26 |
+
model = object_dict["model"]
|
27 |
+
trainer = object_dict["trainer"]
|
28 |
+
|
29 |
+
if not trainer.logger:
|
30 |
+
log.warning("Logger not found! Skipping hyperparameter logging...")
|
31 |
+
return
|
32 |
+
|
33 |
+
hparams["model"] = cfg["model"]
|
34 |
+
|
35 |
+
# save number of model parameters
|
36 |
+
hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
|
37 |
+
hparams["model/params/trainable"] = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
38 |
+
hparams["model/params/non_trainable"] = sum(p.numel() for p in model.parameters() if not p.requires_grad)
|
39 |
+
|
40 |
+
hparams["data"] = cfg["data"]
|
41 |
+
hparams["trainer"] = cfg["trainer"]
|
42 |
+
|
43 |
+
hparams["callbacks"] = cfg.get("callbacks")
|
44 |
+
hparams["extras"] = cfg.get("extras")
|
45 |
+
|
46 |
+
hparams["task_name"] = cfg.get("task_name")
|
47 |
+
hparams["tags"] = cfg.get("tags")
|
48 |
+
hparams["ckpt_path"] = cfg.get("ckpt_path")
|
49 |
+
hparams["seed"] = cfg.get("seed")
|
50 |
+
|
51 |
+
# send hparams to all loggers
|
52 |
+
for logger in trainer.loggers:
|
53 |
+
logger.log_hyperparams(hparams)
|
pflow/utils/model.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def sequence_mask(length, max_length=None):
|
8 |
+
if max_length is None:
|
9 |
+
max_length = length.max()
|
10 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
11 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
12 |
+
|
13 |
+
|
14 |
+
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
15 |
+
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
16 |
+
length = (length / factor).ceil() * factor
|
17 |
+
if not torch.onnx.is_in_onnx_export():
|
18 |
+
return length.int().item()
|
19 |
+
else:
|
20 |
+
return length
|
21 |
+
|
22 |
+
|
23 |
+
def convert_pad_shape(pad_shape):
|
24 |
+
inverted_shape = pad_shape[::-1]
|
25 |
+
pad_shape = [item for sublist in inverted_shape for item in sublist]
|
26 |
+
return pad_shape
|
27 |
+
|
28 |
+
|
29 |
+
def generate_path(duration, mask):
|
30 |
+
device = duration.device
|
31 |
+
|
32 |
+
b, t_x, t_y = mask.shape
|
33 |
+
cum_duration = torch.cumsum(duration, 1)
|
34 |
+
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
35 |
+
|
36 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
37 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
38 |
+
path = path.view(b, t_x, t_y)
|
39 |
+
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
40 |
+
path = path * mask
|
41 |
+
return path
|
42 |
+
|
43 |
+
|
44 |
+
def duration_loss(logw, logw_, lengths):
|
45 |
+
loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths)
|
46 |
+
return loss
|
47 |
+
|
48 |
+
|
49 |
+
def normalize(data, mu, std):
|
50 |
+
if not isinstance(mu, (float, int)):
|
51 |
+
if isinstance(mu, list):
|
52 |
+
mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
|
53 |
+
elif isinstance(mu, torch.Tensor):
|
54 |
+
mu = mu.to(data.device)
|
55 |
+
elif isinstance(mu, np.ndarray):
|
56 |
+
mu = torch.from_numpy(mu).to(data.device)
|
57 |
+
mu = mu.unsqueeze(-1)
|
58 |
+
|
59 |
+
if not isinstance(std, (float, int)):
|
60 |
+
if isinstance(std, list):
|
61 |
+
std = torch.tensor(std, dtype=data.dtype, device=data.device)
|
62 |
+
elif isinstance(std, torch.Tensor):
|
63 |
+
std = std.to(data.device)
|
64 |
+
elif isinstance(std, np.ndarray):
|
65 |
+
std = torch.from_numpy(std).to(data.device)
|
66 |
+
std = std.unsqueeze(-1)
|
67 |
+
|
68 |
+
return (data - mu) / std
|
69 |
+
|
70 |
+
|
71 |
+
def denormalize(data, mu, std):
|
72 |
+
if not isinstance(mu, float):
|
73 |
+
if isinstance(mu, list):
|
74 |
+
mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
|
75 |
+
elif isinstance(mu, torch.Tensor):
|
76 |
+
mu = mu.to(data.device)
|
77 |
+
elif isinstance(mu, np.ndarray):
|
78 |
+
mu = torch.from_numpy(mu).to(data.device)
|
79 |
+
mu = mu.unsqueeze(-1)
|
80 |
+
|
81 |
+
if not isinstance(std, float):
|
82 |
+
if isinstance(std, list):
|
83 |
+
std = torch.tensor(std, dtype=data.dtype, device=data.device)
|
84 |
+
elif isinstance(std, torch.Tensor):
|
85 |
+
std = std.to(data.device)
|
86 |
+
elif isinstance(std, np.ndarray):
|
87 |
+
std = torch.from_numpy(std).to(data.device)
|
88 |
+
std = std.unsqueeze(-1)
|
89 |
+
|
90 |
+
return data * std + mu
|
pflow/utils/monotonic_align/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from pflow.utils.monotonic_align.core import maximum_path_c
|
4 |
+
|
5 |
+
|
6 |
+
def maximum_path(neg_cent, mask):
|
7 |
+
"""Cython optimized version.
|
8 |
+
neg_cent: [b, t_t, t_s]
|
9 |
+
mask: [b, t_t, t_s]
|
10 |
+
"""
|
11 |
+
device = neg_cent.device
|
12 |
+
dtype = neg_cent.dtype
|
13 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
14 |
+
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
15 |
+
|
16 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
17 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
18 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
19 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
pflow/utils/monotonic_align/core.pyx
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cimport cython
|
2 |
+
from cython.parallel import prange
|
3 |
+
|
4 |
+
|
5 |
+
@cython.boundscheck(False)
|
6 |
+
@cython.wraparound(False)
|
7 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
8 |
+
cdef int x
|
9 |
+
cdef int y
|
10 |
+
cdef float v_prev
|
11 |
+
cdef float v_cur
|
12 |
+
cdef float tmp
|
13 |
+
cdef int index = t_x - 1
|
14 |
+
|
15 |
+
for y in range(t_y):
|
16 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
17 |
+
if x == y:
|
18 |
+
v_cur = max_neg_val
|
19 |
+
else:
|
20 |
+
v_cur = value[y-1, x]
|
21 |
+
if x == 0:
|
22 |
+
if y == 0:
|
23 |
+
v_prev = 0.
|
24 |
+
else:
|
25 |
+
v_prev = max_neg_val
|
26 |
+
else:
|
27 |
+
v_prev = value[y-1, x-1]
|
28 |
+
value[y, x] += max(v_prev, v_cur)
|
29 |
+
|
30 |
+
for y in range(t_y - 1, -1, -1):
|
31 |
+
path[y, index] = 1
|
32 |
+
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
33 |
+
index = index - 1
|
34 |
+
|
35 |
+
|
36 |
+
@cython.boundscheck(False)
|
37 |
+
@cython.wraparound(False)
|
38 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
39 |
+
cdef int b = paths.shape[0]
|
40 |
+
cdef int i
|
41 |
+
for i in prange(b, nogil=True):
|
42 |
+
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
pflow/utils/pylogger.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from lightning.pytorch.utilities import rank_zero_only
|
4 |
+
|
5 |
+
|
6 |
+
def get_pylogger(name: str = __name__) -> logging.Logger:
|
7 |
+
"""Initializes a multi-GPU-friendly python command line logger.
|
8 |
+
|
9 |
+
:param name: The name of the logger, defaults to ``__name__``.
|
10 |
+
|
11 |
+
:return: A logger object.
|
12 |
+
"""
|
13 |
+
logger = logging.getLogger(name)
|
14 |
+
|
15 |
+
# this ensures all logging levels get marked with the rank zero decorator
|
16 |
+
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
|
17 |
+
logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
|
18 |
+
for level in logging_levels:
|
19 |
+
setattr(logger, level, rank_zero_only(getattr(logger, level)))
|
20 |
+
|
21 |
+
return logger
|