Spaces:
Sleeping
Sleeping
Upload Gradio Examples.py
Browse files- Gradio Examples.py +246 -0
Gradio Examples.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# #### Gradio Comparing Transfer Learning Models
|
5 |
+
|
6 |
+
# In[1]:
|
7 |
+
|
8 |
+
|
9 |
+
import tensorflow as tf
|
10 |
+
print(tf.__version__)
|
11 |
+
|
12 |
+
|
13 |
+
# In[2]:
|
14 |
+
|
15 |
+
|
16 |
+
pip install gradio==1.6.0
|
17 |
+
|
18 |
+
|
19 |
+
# In[3]:
|
20 |
+
|
21 |
+
|
22 |
+
pip install MarkupSafe==2.1.1
|
23 |
+
|
24 |
+
|
25 |
+
# In[1]:
|
26 |
+
|
27 |
+
|
28 |
+
import gradio as gr
|
29 |
+
import tensorflow as tf
|
30 |
+
import numpy as np
|
31 |
+
from PIL import Image
|
32 |
+
import requests
|
33 |
+
|
34 |
+
|
35 |
+
# Download human-readable labels for ImageNet.
|
36 |
+
response = requests.get("https://git.io/JJkYN")
|
37 |
+
labels = response.text.split("\n")
|
38 |
+
|
39 |
+
mobile_net = tf.keras.applications.MobileNetV2()
|
40 |
+
inception_net = tf.keras.applications.InceptionV3()
|
41 |
+
|
42 |
+
|
43 |
+
# In[2]:
|
44 |
+
|
45 |
+
|
46 |
+
def classify_image_with_mobile_net(im):
|
47 |
+
im = Image.fromarray(im.astype('uint8'), 'RGB')
|
48 |
+
im = im.resize((224, 224))
|
49 |
+
arr = np.array(im).reshape((-1, 224, 224, 3))
|
50 |
+
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
|
51 |
+
prediction = mobile_net.predict(arr).flatten()
|
52 |
+
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# In[3]:
|
57 |
+
|
58 |
+
|
59 |
+
def classify_image_with_inception_net(im):
|
60 |
+
# Resize the image to
|
61 |
+
im = Image.fromarray(im.astype('uint8'), 'RGB')
|
62 |
+
im = im.resize((299, 299))
|
63 |
+
arr = np.array(im).reshape((-1, 299, 299, 3))
|
64 |
+
arr = tf.keras.applications.inception_v3.preprocess_input(arr)
|
65 |
+
prediction = inception_net.predict(arr).flatten()
|
66 |
+
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
67 |
+
|
68 |
+
|
69 |
+
# In[4]:
|
70 |
+
|
71 |
+
|
72 |
+
imagein = gr.inputs.Image()
|
73 |
+
label = gr.outputs.Label(num_top_classes=3)
|
74 |
+
sample_images = [
|
75 |
+
["monkey.jpg"],
|
76 |
+
["sailboat.jpg"],
|
77 |
+
["bicycle.jpg"],
|
78 |
+
["download.jpg"],
|
79 |
+
]
|
80 |
+
|
81 |
+
|
82 |
+
# In[6]:
|
83 |
+
|
84 |
+
|
85 |
+
gr.Interface(
|
86 |
+
[classify_image_with_mobile_net, classify_image_with_inception_net],
|
87 |
+
imagein,
|
88 |
+
label,
|
89 |
+
title="MobileNet vs. InceptionNet",
|
90 |
+
description="""Let's compare 2 state-of-the-art machine learning models that classify images into one of 1,000 categories: MobileNet (top),
|
91 |
+
a lightweight model that has an accuracy of 0.704, vs. InceptionNet
|
92 |
+
(bottom), a much heavier model that has an accuracy of 0.779.""",
|
93 |
+
examples=sample_images).launch()
|
94 |
+
|
95 |
+
|
96 |
+
# In[6]:
|
97 |
+
|
98 |
+
|
99 |
+
pip install transformers
|
100 |
+
|
101 |
+
|
102 |
+
# In[6]:
|
103 |
+
|
104 |
+
|
105 |
+
import gradio as gr
|
106 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
107 |
+
|
108 |
+
# Load the models and tokenizers
|
109 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
110 |
+
|
111 |
+
tokenizer1 = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-imdb")
|
112 |
+
tokenizer2 = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
113 |
+
model1 = AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")
|
114 |
+
model2 = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
# Define the sentiment prediction functions
|
120 |
+
def predict_sentiment(text):
|
121 |
+
# Predict sentiment using model 1
|
122 |
+
inputs1 = tokenizer1.encode_plus(text, padding="longest", truncation=True, return_tensors="pt")
|
123 |
+
outputs1 = model1(**inputs1)
|
124 |
+
predicted_label1 = outputs1.logits.argmax().item()
|
125 |
+
sentiment1 = "Positive" if predicted_label1 == 1 else "Negative" if predicted_label1 == 0 else "Neutral"
|
126 |
+
|
127 |
+
# Predict sentiment using model 2
|
128 |
+
inputs2 = tokenizer2.encode_plus(text, padding="longest", truncation=True, return_tensors="pt")
|
129 |
+
outputs2 = model2(**inputs2)
|
130 |
+
predicted_label2 = outputs2.logits.argmax().item()
|
131 |
+
sentiment2 = "Positive" if predicted_label2 == 1 else "Negative" if predicted_label2 == 0 else "Neutral"
|
132 |
+
|
133 |
+
return sentiment1, sentiment2
|
134 |
+
|
135 |
+
# Create the Gradio interface
|
136 |
+
iface = gr.Interface(
|
137 |
+
fn=predict_sentiment,
|
138 |
+
inputs="text",
|
139 |
+
outputs=["text", "text"],
|
140 |
+
title="Sentiment Analysis (Model 1 vs Model 2)",
|
141 |
+
description="Compare sentiment predictions from two models.",
|
142 |
+
)
|
143 |
+
|
144 |
+
# Launch the interface
|
145 |
+
iface.launch()
|
146 |
+
|
147 |
+
|
148 |
+
# In[17]:
|
149 |
+
|
150 |
+
|
151 |
+
import gradio as gr
|
152 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
153 |
+
import torch
|
154 |
+
from torchvision import transforms
|
155 |
+
from io import BytesIO
|
156 |
+
from PIL import Image
|
157 |
+
|
158 |
+
# Define the available models and datasets
|
159 |
+
models = {
|
160 |
+
"Model 1": {
|
161 |
+
"model_name": "bert-base-uncased",
|
162 |
+
"tokenizer": None,
|
163 |
+
"model": None
|
164 |
+
},
|
165 |
+
"Model 2": {
|
166 |
+
"model_name": "distilbert-base-uncased",
|
167 |
+
"tokenizer": None,
|
168 |
+
"model": None
|
169 |
+
},
|
170 |
+
# Add more models as needed
|
171 |
+
}
|
172 |
+
|
173 |
+
datasets = {
|
174 |
+
"Dataset 1": {
|
175 |
+
"name": "imdb",
|
176 |
+
"split": "test",
|
177 |
+
"features": ["text"],
|
178 |
+
},
|
179 |
+
"Dataset 2": {
|
180 |
+
"name": "ag_news",
|
181 |
+
"split": "test",
|
182 |
+
"features": ["text"],
|
183 |
+
},
|
184 |
+
# Add more datasets as needed
|
185 |
+
}
|
186 |
+
|
187 |
+
# Load models
|
188 |
+
for model_key, model_info in models.items():
|
189 |
+
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
|
190 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_info["model_name"])
|
191 |
+
model_info["tokenizer"] = tokenizer
|
192 |
+
model_info["model"] = model
|
193 |
+
|
194 |
+
# Set the device to GPU if available
|
195 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
196 |
+
for model_info in models.values():
|
197 |
+
model_info["model"].to(device)
|
198 |
+
|
199 |
+
# Define the preprocessing function
|
200 |
+
def preprocess(image_file):
|
201 |
+
image = Image.open(BytesIO(image_file.read())).convert("RGB")
|
202 |
+
preprocess_transform = transforms.Compose([
|
203 |
+
transforms.Resize((224, 224)),
|
204 |
+
transforms.ToTensor(),
|
205 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
206 |
+
])
|
207 |
+
image = preprocess_transform(image)
|
208 |
+
image = image.unsqueeze(0)
|
209 |
+
return image.to(device)
|
210 |
+
|
211 |
+
# Define the prediction function
|
212 |
+
def predict(image_file, model_key):
|
213 |
+
model_info = models[model_key]
|
214 |
+
tokenizer = model_info["tokenizer"]
|
215 |
+
model = model_info["model"]
|
216 |
+
|
217 |
+
image = preprocess(image_file)
|
218 |
+
|
219 |
+
with torch.no_grad():
|
220 |
+
outputs = model(image)
|
221 |
+
|
222 |
+
predictions = outputs.logits.argmax(dim=1)
|
223 |
+
|
224 |
+
return predictions.item()
|
225 |
+
|
226 |
+
def classify_image(image, model_key):
|
227 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
228 |
+
image_file = BytesIO()
|
229 |
+
image.save(image_file, format="JPEG")
|
230 |
+
prediction = predict(image_file=image_file, model_key=model_key)
|
231 |
+
return prediction
|
232 |
+
|
233 |
+
iface = gr.Interface(fn=classify_image,
|
234 |
+
inputs=["image", gr.inputs.Dropdown(list(models.keys()), label="Model")],
|
235 |
+
outputs="text",
|
236 |
+
title="Image Classification",
|
237 |
+
description="Classify images using Hugging Face models")
|
238 |
+
|
239 |
+
iface.launch()
|
240 |
+
|
241 |
+
|
242 |
+
# In[ ]:
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|