parneetsingh022 commited on
Commit
a8dc09c
·
verified ·
1 Parent(s): cf6a26d

Upload 6 files

Browse files
custom_classifier/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .configuration import CustomModelConfig
2
+ from .model import CustomClassifier
custom_classifier/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (311 Bytes). View file
 
custom_classifier/__pycache__/configuration.cpython-311.pyc ADDED
Binary file (1.12 kB). View file
 
custom_classifier/__pycache__/model.cpython-311.pyc ADDED
Binary file (6.22 kB). View file
 
custom_classifier/configuration.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class CustomModelConfig(PretrainedConfig):
4
+ model_type = "custom"
5
+ input_size = (3, 128, 128)
6
+ num_classes = 2
7
+
8
+ def __init__(self, **kwargs):
9
+ super().__init__(**kwargs)
10
+ self.input_size = kwargs.get("input_size", self.input_size)
11
+ self.num_classes = kwargs.get("num_classes", self.num_classes)
custom_classifier/model.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from transformers import PreTrainedModel
4
+ from .configuration import CustomModelConfig
5
+ from torchvision import transforms
6
+ from PIL import Image
7
+ import sys
8
+
9
+ class CustomModel(nn.Module):
10
+ def __init__(self, input_shape, num_classes):
11
+ super(CustomModel, self).__init__()
12
+
13
+ self.conv_layers = nn.Sequential(
14
+ nn.Conv2d(in_channels=input_shape[0], out_channels=32, kernel_size=3, padding=1),
15
+ nn.ReLU(),
16
+ nn.BatchNorm2d(32),
17
+ nn.MaxPool2d(kernel_size=2),
18
+ nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
19
+ nn.ReLU(),
20
+ nn.BatchNorm2d(64),
21
+ nn.MaxPool2d(kernel_size=2),
22
+ nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
23
+ nn.ReLU(),
24
+ nn.BatchNorm2d(128),
25
+ nn.MaxPool2d(kernel_size=2),
26
+ nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
27
+ nn.ReLU(),
28
+ nn.BatchNorm2d(128),
29
+ nn.MaxPool2d(kernel_size=2)
30
+ )
31
+
32
+ self.fc_layers = nn.Sequential(
33
+ nn.Flatten(),
34
+ nn.Dropout(0.5),
35
+ nn.Linear(128 * (input_shape[1] // 16) * (input_shape[2] // 16), 512),
36
+ nn.ReLU(),
37
+ nn.BatchNorm1d(512),
38
+ nn.Dropout(0.5),
39
+ nn.Linear(512, num_classes)
40
+ )
41
+
42
+ def forward(self, x):
43
+ x = self.conv_layers(x)
44
+ x = self.fc_layers(x)
45
+ return x
46
+
47
+ class CustomClassifier(PreTrainedModel):
48
+ config_class = CustomModelConfig
49
+
50
+
51
+ def __init__(self, config):
52
+ super().__init__(config)
53
+ self.model = CustomModel(config.input_size, config.num_classes)
54
+ self.preprocess = transforms.Compose([
55
+ transforms.Resize((128, 128)),
56
+ transforms.ToTensor(),
57
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
58
+ ])
59
+ self.classes = ['cat', 'dog']
60
+
61
+ def forward(self, x):
62
+ try:
63
+ x = Image.open(x).convert("RGB")
64
+ except Exception as e:
65
+ raise Exception(f"Error: Unable to load image file {x}. Check if the file exists or is in the right format. Details: {e}")
66
+
67
+ x = self.preprocess(x).unsqueeze(0)
68
+
69
+
70
+ return self.model(x)
71
+
72
+ def predict(self, x, get_class=False):
73
+ self.eval()
74
+ with torch.no_grad():
75
+ outputs = self.forward(x)
76
+ probabilities = torch.nn.functional.softmax(outputs, dim=1)
77
+ if not get_class:
78
+ return {
79
+ "cat": round(probabilities[0][0].item(), 3),
80
+ "dog": round(probabilities[0][1].item(), 3)
81
+ }
82
+ else:
83
+
84
+ return self.classes[probabilities.argmax(dim=1).item()]
85
+
86
+
87
+