Spaces:
Running
Running
File size: 16,775 Bytes
cfe1a3c 8ec911f cfe1a3c 62f31c8 cfe1a3c 62f31c8 cfe1a3c 8ec911f 9d3e0cb 8ec911f 9d3e0cb 8ec911f 9d3e0cb 8ec911f cfe1a3c d48ef09 cfe1a3c d48ef09 cfe1a3c d48ef09 cfe1a3c 62f31c8 cfe1a3c 62f31c8 cfe1a3c 62f31c8 cfe1a3c 62f31c8 cfe1a3c 62f31c8 cfe1a3c 62f31c8 cfe1a3c d48ef09 cfe1a3c d48ef09 cfe1a3c 8ec911f cfe1a3c d48ef09 cfe1a3c 8ec911f d48ef09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import logging
import re
import akshare as ak
import pandas as pd
from datetime import datetime, timedelta
import time # 导入标准库的 time 模块
import os
import requests
import threading
import asyncio
import yfinance
logging.basicConfig(level=logging.INFO)
# 获取当前文件的目录
base_dir = os.path.dirname(os.path.abspath(__file__))
# 构建CSV文件的绝对路径
nasdaq_100_path = os.path.join(base_dir, './model/nasdaq100.csv')
dow_jones_path = os.path.join(base_dir, './model/dji.csv')
sp500_path = os.path.join(base_dir, './model/sp500.csv')
nasdaq_composite_path = os.path.join(base_dir, './model/nasdaq_all.csv')
# 从CSV文件加载成分股数据
nasdaq_100_stocks = pd.read_csv(nasdaq_100_path)
dow_jones_stocks = pd.read_csv(dow_jones_path)
sp500_stocks = pd.read_csv(sp500_path)
nasdaq_composite_stocks = pd.read_csv(nasdaq_composite_path)
def fetch_stock_us_spot_data_with_retries():
# 定义重试间隔时间序列(秒)
retry_intervals = [10, 20, 60, 300, 600]
retry_index = 0 # 初始重试序号
while True:
try:
# 尝试获取API数据
symbols = ak.stock_us_spot_em()
return symbols # 成功获取数据后返回
except Exception as e:
print(f"Error fetching data: {e}")
# 获取当前重试等待时间
wait_time = retry_intervals[retry_index]
print(f"Retrying in {wait_time} seconds...")
time.sleep(wait_time) # 等待指定的秒数
# 更新重试索引,但不要超出重试时间列表的范围
retry_index = min(retry_index + 1, len(retry_intervals) - 1)
async def fetch_stock_us_spot_data_with_retries_async():
retry_intervals = [10, 20, 60, 300, 600]
retry_index = 0
while True:
try:
symbols = await asyncio.to_thread(ak.stock_us_spot_em)
return symbols
except Exception as e:
print(f"Error fetching data: {e}")
wait_time = retry_intervals[retry_index]
print(f"Retrying in {wait_time} seconds...")
await asyncio.sleep(wait_time)
retry_index = min(retry_index + 1, len(retry_intervals) - 1)
symbols = None
async def fetch_symbols():
global symbols
# 异步获取数据
symbols = await fetch_stock_us_spot_data_with_retries_async()
print("Symbols initialized:", symbols)
# 全局变量
index_us_stock_index_INX = None
index_us_stock_index_DJI = None
index_us_stock_index_IXIC = None
index_us_stock_index_NDX = None
def update_stock_indices():
global index_us_stock_index_INX, index_us_stock_index_DJI, index_us_stock_index_IXIC, index_us_stock_index_NDX
try:
index_us_stock_index_INX = ak.index_us_stock_sina(symbol=".INX")
index_us_stock_index_DJI = ak.index_us_stock_sina(symbol=".DJI")
index_us_stock_index_IXIC = ak.index_us_stock_sina(symbol=".IXIC")
index_us_stock_index_NDX = ak.index_us_stock_sina(symbol=".NDX")
print("Stock indices updated")
except Exception as e:
print(f"Error updating stock indices: {e}")
# 设置定时器,每隔12小时更新一次
threading.Timer(12 * 60 * 60, update_stock_indices).start()
# 程序开始时立即更新一次
update_stock_indices()
# 创建列名转换的字典
column_mapping = {
'日期': 'date',
'开盘': 'open',
'收盘': 'close',
'最高': 'high',
'最低': 'low',
'成交量': 'volume',
'成交额': 'amount',
'振幅': 'amplitude',
'涨跌幅': 'price_change_percentage',
'涨跌额': 'price_change_amount',
'换手率': 'turnover_rate'
}
# 定义一个标准的列顺序
standard_columns = ['date', 'open', 'close', 'high', 'low', 'volume', 'amount']
# 定义查找函数
def find_stock_entry(stock_code):
# 使用 str.endswith 来匹配股票代码
matching_row = symbols[symbols['代码'].str.endswith(stock_code)]
# print(symbols)
if not matching_row.empty:
# print(f"股票代码 {stock_code} 找到, 代码为 {matching_row['代码'].values[0]}")
return matching_row['代码'].values[0]
else:
return ""
'''
# 示例调用
# 测试函数
result = find_stock_entry('AAPL')
if isinstance(result, pd.DataFrame) and not result.empty:
# 如果找到的结果不为空,获取代码列的值
code_value = result['代码'].values[0]
print(code_value)
else:
print(result)
'''
def reduce_columns(df, columns_to_keep):
return df[columns_to_keep]
# 创建缓存字典
_price_cache = {}
def get_last_minute_stock_price(symbol: str, max_retries=3) -> float:
"""获取股票最新价格,使用30分钟缓存,并包含重试机制"""
if not symbol:
return -1.0
if symbol == "NONE_SYMBOL_FOUND":
return -1.0
current_time = datetime.now()
# 检查缓存
if symbol in _price_cache:
cached_price, cached_time = _price_cache[symbol]
# 如果缓存时间在30分钟内,直接返回缓存的价格
if current_time - cached_time < timedelta(minutes=30):
return cached_price
# 重试机制
for attempt in range(max_retries):
try:
# 缓存无效或不存在,从yfinance获取新数据
stock_data = yfinance.download(
symbol,
period='1d',
interval='5m',
progress=False, # 禁用进度条
timeout=10 # 设置超时时间
)
if stock_data.empty:
print(f"Warning: Empty data received for {symbol}, attempt {attempt + 1}/{max_retries}")
if attempt == max_retries - 1:
return -1.0
time.sleep(1) # 等待1秒后重试
continue
latest_price = float(stock_data['Close'].iloc[-1])
# 更新缓存
_price_cache[symbol] = (latest_price, current_time)
return latest_price
except Exception as e:
print(f"Error fetching price for {symbol}, attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt == max_retries - 1:
return -1.0
time.sleep(1) # 等待1秒后重试
return -1.0
# 返回个股历史数据
def get_stock_history(symbol, news_date, retries=10):
# 定义重试间隔时间序列(秒)
retry_intervals = [10, 20, 60, 300, 600]
retry_count = 0
# 如果传入的symbol不包含数字前缀,则通过 find_stock_entry 获取完整的symbol
if not any(char.isdigit() for char in symbol):
full_symbol = find_stock_entry(symbol)
if len(symbol) != 0 and full_symbol:
symbol = full_symbol
else:
symbol = ""
# 将news_date转换为datetime对象
current_date = datetime.now()
# 计算start_date和end_date
start_date = (current_date - timedelta(days=60)).strftime("%Y%m%d")
end_date = current_date.strftime("%Y%m%d")
stock_hist_df = None
retry_index = 0 # 初始化重试索引
while retry_count <= retries and len(symbol) != 0: # 无限循环重试
try:
# 尝试获取API数据
stock_hist_df = ak.stock_us_hist(symbol=symbol, period="daily", start_date=start_date, end_date=end_date, adjust="")
if stock_hist_df.empty: # 检查是否为空数据
# print(f"No data for {symbol} on {news_date}.")
stock_hist_df = None # 将 DataFrame 设置为 None
break
except (requests.exceptions.Timeout, ConnectionError) as e:
print(f"Request timed out: {e}. Retrying...")
retry_count += 1 # 增加重试次数
continue
except (TypeError, ValueError, BaseException) as e:
print(f"Error {e} scraping data for {symbol} on {news_date}. Break...")
# 可能是没数据,直接Break
break
# 如果发生异常,等待一段时间再重试
wait_time = retry_intervals[retry_index]
print(f"Waiting for {wait_time} seconds before retrying...")
time.sleep(wait_time)
retry_index = (retry_index + 1) if retry_index < len(retry_intervals) - 1 else retry_index # 更新重试索引,不超过列表长度
# 如果获取失败或数据为空,返回填充为0的 DataFrame
if stock_hist_df is None or stock_hist_df.empty:
# 构建一个空的 DataFrame,包含指定日期范围的空数据
date_range = pd.date_range(start=start_date, end=end_date)
stock_hist_df = pd.DataFrame({
'date': date_range,
'开盘': 0,
'收盘': 0,
'最高': 0,
'最低': 0,
'成交量': 0,
'成交额': 0,
'振幅': 0,
'涨跌幅': 0,
'涨跌额': 0,
'换手率': 0
})
# 使用rename方法转换列名
stock_hist_df = stock_hist_df.rename(columns=column_mapping)
stock_hist_df = stock_hist_df.reindex(columns=standard_columns)
# 处理个股数据,保留所需列
stock_hist_df = reduce_columns(stock_hist_df, standard_columns)
return stock_hist_df
# 统一列名
stock_hist_df = stock_hist_df.rename(columns=column_mapping)
stock_hist_df = stock_hist_df.reindex(columns=standard_columns)
# 处理个股数据,保留所需列
stock_hist_df = reduce_columns(stock_hist_df, standard_columns)
return stock_hist_df
'''
# 示例调用
result = get_stock_history('AAPL', '20240214')
print(result)
'''
# result = get_stock_history('ATMU', '20231218')
# print(result)
# 返回个股所属指数历史数据
def get_stock_index_history(symbol, news_date, force_index=0):
# 检查股票所属的指数
if symbol in nasdaq_100_stocks['Symbol'].values or force_index == 1:
index_code = ".NDX"
index_data = index_us_stock_index_NDX
elif symbol in dow_jones_stocks['Symbol'].values or force_index == 2:
index_code = ".DJI"
index_data = index_us_stock_index_DJI
elif symbol in sp500_stocks['Symbol'].values or force_index == 3:
index_code = ".INX"
index_data = index_us_stock_index_INX
elif symbol in nasdaq_composite_stocks["Symbol"].values or symbol is None or symbol == "" or force_index == 4:
index_code = ".IXIC"
index_data = index_us_stock_index_IXIC
else:
# print(f"股票代码 {symbol} 不属于纳斯达克100、道琼斯工业、标准普尔500或纳斯达克综合指数。")
index_code = ".IXIC"
index_data = index_us_stock_index_IXIC
# 获取当前日期
current_date = datetime.now()
# 计算 start_date 和 end_date
start_date = (current_date - timedelta(weeks=8)).strftime("%Y-%m-%d")
end_date = current_date.strftime("%Y-%m-%d")
# 确保 index_data['date'] 是 datetime 类型
index_data['date'] = pd.to_datetime(index_data['date'])
# 从指数历史数据中提取指定日期范围的数据
index_hist_df = index_data[(index_data['date'] >= start_date) & (index_data['date'] <= end_date)]
# 统一列名
index_hist_df = index_hist_df.rename(columns=column_mapping)
index_hist_df = index_hist_df.reindex(columns=standard_columns)
# 处理个股数据,保留所需列
index_hist_df = reduce_columns(index_hist_df, standard_columns)
return index_hist_df
'''
# 示例调用
result = get_stock_index_history('AAPL', '20240214')
print(result)
'''
def find_stock_codes_or_names(entities):
"""
从给定的实体列表中检索股票代码或公司名称。
:param entities: 命名实体识别结果列表,格式为 [('实体名称', '实体类型'), ...]
:return: 相关的股票代码列表
"""
stock_codes = set()
# 合并所有股票字典并清理数据,确保都是字符串
all_symbols = pd.concat([nasdaq_100_stocks['Symbol'],
dow_jones_stocks['Symbol'],
sp500_stocks['Symbol'],
nasdaq_composite_stocks['Symbol']]).dropna().astype(str).unique().tolist()
all_names = pd.concat([nasdaq_100_stocks['Name'],
nasdaq_composite_stocks['Name'],
sp500_stocks['Security'],
dow_jones_stocks['Company']]).dropna().astype(str).unique().tolist()
# 创建一个 Name 到 Symbol 的映射
name_to_symbol = {}
for idx, name in enumerate(all_names):
if idx < len(all_symbols):
symbol = all_symbols[idx]
name_to_symbol[name.lower()] = symbol
# 查找实体映射到的股票代码
for entity, entity_type in entities:
entity_lower = entity.lower()
entity_upper = entity.upper()
# 检查 Symbol 列
if entity_upper in all_symbols:
stock_codes.add(entity_upper)
#print(f"Matched symbol: {entity_upper}")
# 检查 Name 列,确保完整匹配而不是部分匹配
for name, symbol in name_to_symbol.items():
# 使用正则表达式进行严格匹配
pattern = rf'\b{re.escape(entity_lower)}\b'
if re.search(pattern, name):
stock_codes.add(symbol.upper())
#print(f"Matched name/company: '{entity_lower}' in '{name}' -> {symbol.upper()}")
#print(f"Stock codes found: {stock_codes}")
if not stock_codes:
return ['NONE_SYMBOL_FOUND']
return list(stock_codes)
def process_history(stock_history, target_date, history_days=30, following_days=3):
# 检查数据是否为空
if stock_history.empty:
return create_empty_data(history_days), create_empty_data(following_days)
# 确保日期列存在并转换为datetime格式
if 'date' not in stock_history.columns:
return create_empty_data(history_days), create_empty_data(following_days)
stock_history['date'] = pd.to_datetime(stock_history['date'])
target_date = pd.to_datetime(target_date)
# 按日期升序排序
stock_history = stock_history.sort_values('date')
# 找到目标日期对应的索引
target_row = stock_history[stock_history['date'] <= target_date]
if target_row.empty:
return create_empty_data(history_days), create_empty_data(following_days)
# 获取目标日期最近的行
target_index = target_row.index[-1]
target_pos = stock_history.index.get_loc(target_index)
# 获取历史数据(包括目标日期)
start_pos = max(0, target_pos - history_days + 1)
previous_rows = stock_history.iloc[start_pos:target_pos + 1]
# 获取后续数据
following_rows = stock_history.iloc[target_pos + 1:target_pos + following_days + 1]
# 删除日期列并确保数据完整性
previous_rows = previous_rows.drop(columns=['date'])
following_rows = following_rows.drop(columns=['date'])
# 处理数据不足的情况
previous_rows = handle_insufficient_data(previous_rows, history_days)
following_rows = handle_insufficient_data(following_rows, following_days)
return previous_rows.iloc[:, :6], following_rows.iloc[:, :6]
def create_empty_data(days):
return pd.DataFrame({
'开盘': [-1] * days,
'收盘': [-1] * days,
'最高': [-1] * days,
'最低': [-1] * days,
'成交量': [-1] * days,
'成交额': [-1] * days
})
def handle_insufficient_data(data, required_days):
current_rows = len(data)
if current_rows < required_days:
missing_rows = required_days - current_rows
empty_data = create_empty_data(missing_rows)
return pd.concat([empty_data, data]).reset_index(drop=True)
return data
if __name__ == "__main__":
# 测试函数
result = find_stock_entry('AAPL')
print(f"find_stock_entry: {result}")
result = get_stock_history('AAPL', '20240214')
print(f"get_stock_history: {result}")
result = get_stock_index_history('AAPL', '20240214')
print(f"get_stock_index_history: {result}")
result = find_stock_codes_or_names([('苹果', 'ORG'), ('苹果公司', 'ORG')])
print(f"find_stock_codes_or_names: {result}")
result = process_history(get_stock_history('AAPL', '20240214'), '20240214')
print(f"process_history: {result}")
result = process_history(get_stock_index_history('AAPL', '20240214'), '20240214')
print(f"process_history: {result}")
pass |