VerySmolTextGen / model.py
padmanabhbosamia's picture
Upload 5 files
416db21 verified
raw
history blame
21.6 kB
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import OneCycleLR
from transformers import AutoTokenizer
import torch.nn as nn
import math
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
import os
def _init_weights(module, std=0.02):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = float(eps) # Ensure eps is a float
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * norm * self.weight
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000):
super().__init__()
self.dim = dim
self.max_position_embeddings = int(max_position_embeddings) # Convert to int
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
def forward(self, x, seq_len=None):
# Convert seq_len to int and ensure it's a valid value
seq_len = int(seq_len) if seq_len is not None else x.size(1)
if seq_len > self.max_position_embeddings:
seq_len = self.max_position_embeddings
return (
self.cos_cached[:,:,:seq_len,:],
self.sin_cached[:,:,:seq_len,:]
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
# Ensure proper broadcasting
cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
def forward(self, hidden_states, cos, sin, attention_mask=None):
batch_size, seq_length, _ = hidden_states.shape
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Reshape for attention computation
q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim)
k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
# Transpose for attention computation
q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
# Apply rotary embeddings
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Repeat k/v heads if num_key_value_heads < num_attention_heads
if self.num_key_value_heads != self.num_attention_heads:
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
# Compute attention
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1)
# Compute output
output = torch.matmul(attn_weights, v)
output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim]
output = output.view(batch_size, seq_length, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = Attention(config)
self.mlp = MLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, hidden_states, cos, sin, attention_mask=None):
# Self attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask)
hidden_states = residual + hidden_states
# MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Token embeddings
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
# Initialize transformer layers
self.layers = nn.ModuleList([
DecoderLayer(config) for _ in range(config.num_hidden_layers)
])
# Final layer norm
self.norm = RMSNorm(config.hidden_size, eps=float(config.rms_norm_eps))
# Initialize rotary embeddings
self.rotary_emb = RotaryEmbedding(
config.hidden_size // config.num_attention_heads,
max_position_embeddings=config.max_position_embeddings
)
# Initialize weights
self.apply(lambda p: _init_weights(p, std=config.initializer_range))
def forward(self, input_ids, attention_mask=None):
try:
# Ensure inputs are on the correct device
device = input_ids.device
batch_size, seq_length = input_ids.shape
# Input validation
if seq_length > self.config.max_position_embeddings:
raise ValueError(f"Input sequence length {seq_length} exceeds maximum position embeddings {self.config.max_position_embeddings}")
# Get embeddings
hidden_states = self.embed_tokens(input_ids)
# Get position embeddings
cos, sin = self.rotary_emb(hidden_states, seq_length)
# Generate attention mask if none provided
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length),
dtype=torch.bool,
device=device
)
else:
# Convert to boolean if it's not already and ensure contiguous memory
attention_mask = attention_mask.bool().contiguous()
# Create causal mask
causal_mask = torch.triu(
torch.ones((seq_length, seq_length), device=device),
diagonal=1
).bool()
# Create attention mask [batch_size, 1, seq_length, seq_length]
attention_mask = attention_mask.view(batch_size, 1, 1, seq_length)
attention_mask = attention_mask.expand(batch_size, 1, seq_length, seq_length)
# Prepare causal mask
causal_mask = causal_mask.view(1, 1, seq_length, seq_length)
# Combine masks
mask = attention_mask & ~causal_mask
# Convert boolean mask to float mask
mask = mask.to(dtype=hidden_states.dtype)
mask = (1.0 - mask) * torch.finfo(hidden_states.dtype).min
# Apply transformer layers
for layer in self.layers:
hidden_states = layer(hidden_states, cos, sin, mask)
# Apply final normalization
hidden_states = self.norm(hidden_states)
# Project back to vocabulary
logits = F.linear(hidden_states, self.embed_tokens.weight)
return logits
except Exception as e:
print(f"\nForward pass error:")
print(f"Input shape: {input_ids.shape}")
print(f"Device: {input_ids.device}")
print(f"CUDA memory allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
print(f"Error: {str(e)}")
raise
def generate(
self,
input_ids,
attention_mask=None,
max_length=100,
temperature=0.7,
top_p=0.9,
top_k=50,
num_return_sequences=1,
do_sample=True,
pad_token_id=None,
bos_token_id=None,
eos_token_id=None
):
try:
batch_size = input_ids.shape[0]
current_length = input_ids.shape[1]
device = input_ids.device
# Input validation
if current_length >= self.config.max_position_embeddings:
raise ValueError(f"Input sequence length {current_length} exceeds maximum position embeddings {self.config.max_position_embeddings}")
# Ensure we don't exceed maximum position embeddings
max_length = min(max_length, self.config.max_position_embeddings)
# Initialize attention mask if None
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool, device=device)
for _ in range(max_length - current_length):
# Forward pass
outputs = self(input_ids, attention_mask)
next_token_logits = outputs[:, -1, :] / temperature
# Apply top-k filtering
if top_k > 0:
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = float('-inf')
# Apply top-p filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = float('-inf')
# Sample from the filtered distribution
if do_sample:
probs = F.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(next_token_logits, dim=-1)
# Append new tokens
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
attention_mask = torch.cat([attention_mask, torch.ones_like(next_tokens.unsqueeze(-1))], dim=-1)
# Stop if we've hit special tokens
if (pad_token_id is not None and (next_tokens == pad_token_id).all()) or \
(eos_token_id is not None and (next_tokens == eos_token_id).all()):
break
return input_ids
except Exception as e:
print(f"\nGeneration error:")
print(f"Input shape: {input_ids.shape}")
print(f"Device: {input_ids.device}")
print(f"Error: {str(e)}")
raise
class TextDataset(Dataset):
def __init__(self, config, split="train"):
self.config = config
# Load dataset from HuggingFace
full_dataset = load_dataset(
config.data.datasets[0].path,
config.data.datasets[0].subset,
split=split
)
# Apply split ratio if less than 1
if config.data.datasets[0].split_ratio < 1.0:
num_samples = int(len(full_dataset) * config.data.datasets[0].split_ratio)
self.dataset = full_dataset.select(range(num_samples))
else:
self.dataset = full_dataset
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# Get text from dataset
text = self.dataset[idx]["text"]
# Tokenize
encodings = self.tokenizer(
text,
truncation=True,
max_length=self.config.model.max_position_embeddings,
padding="max_length",
return_tensors="pt"
)
return {
"input_ids": encodings.input_ids.squeeze(),
"attention_mask": encodings.attention_mask.squeeze(),
"labels": encodings.input_ids.squeeze()
}
class SmolLM2Lightning(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.save_hyperparameters()
self.config = config
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Initialize the base model
self.model = SmolLM2(config.model)
def forward(self, input_ids, attention_mask=None):
return self.model(input_ids, attention_mask)
def training_step(self, batch, batch_idx):
try:
input_ids = batch["input_ids"]
labels = batch["labels"]
attention_mask = batch.get("attention_mask", None)
# Ensure tensors are contiguous and on the correct device
inputs = input_ids[..., :-1].contiguous()
labels = input_ids[..., 1:].contiguous()
if attention_mask is not None:
attention_mask = attention_mask[..., :-1].contiguous()
# Forward pass
logits = self(inputs, attention_mask)
# Calculate loss
loss = F.cross_entropy(
logits.view(-1, self.config.model.vocab_size),
labels.view(-1),
ignore_index=self.config.model.pad_token_id if self.config.model.pad_token_id is not None else -100,
reduction='mean'
)
# Detach loss for logging
loss_value = loss.detach().float()
# Log metrics
self.log('train_loss', loss_value, prog_bar=True, on_step=True, sync_dist=True)
return loss
except Exception as e:
print(f"\nTraining step error:")
print(f"Input shape: {input_ids.shape if input_ids is not None else 'None'}")
print(f"Device: {input_ids.device if input_ids is not None else 'None'}")
print(f"Error: {str(e)}")
raise
def validation_step(self, batch, batch_idx):
try:
input_ids = batch["input_ids"]
labels = batch["labels"]
attention_mask = batch.get("attention_mask", None)
# Ensure tensors are contiguous and on the correct device
inputs = input_ids[..., :-1].contiguous()
labels = input_ids[..., 1:].contiguous()
if attention_mask is not None:
attention_mask = attention_mask[..., :-1].contiguous()
# Forward pass
logits = self(inputs, attention_mask)
# Calculate loss
loss = F.cross_entropy(
logits.view(-1, self.config.model.vocab_size),
labels.view(-1),
ignore_index=self.config.model.pad_token_id if self.config.model.pad_token_id is not None else -100,
reduction='mean'
)
# Detach loss for logging
loss_value = loss.detach().float()
# Log metrics
self.log('val_loss', loss_value, prog_bar=True, on_epoch=True, sync_dist=True)
return loss
except Exception as e:
print(f"\nValidation step error:")
print(f"Input shape: {input_ids.shape if input_ids is not None else 'None'}")
print(f"Device: {input_ids.device if input_ids is not None else 'None'}")
print(f"Error: {str(e)}")
raise
def configure_optimizers(self):
# Create optimizer with explicit type conversion
optimizer = AdamW(
self.parameters(),
lr=float(self.config.scheduler.learning_rate),
weight_decay=float(self.config.optimizer.weight_decay),
betas=(float(self.config.optimizer.adam_beta1),
float(self.config.optimizer.adam_beta2)),
eps=float(self.config.optimizer.adam_eps),
)
# Create scheduler
scheduler = OneCycleLR(
optimizer,
max_lr=float(self.config.scheduler.max_lr),
total_steps=int(self.config.training.max_steps),
pct_start=float(self.config.scheduler.pct_start),
anneal_strategy=self.config.scheduler.anneal_strategy,
cycle_momentum=bool(self.config.scheduler.cycle_momentum),
div_factor=float(self.config.scheduler.div_factor),
final_div_factor=float(self.config.scheduler.final_div_factor),
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "step",
"frequency": 1
}
}
def generate(self, *args, **kwargs):
return self.model.generate(*args, **kwargs)
def train_dataloader(self):
dataset = TextDataset(self.config, split="train")
return DataLoader(
dataset,
batch_size=self.config.training.batch_size,
shuffle=True,
num_workers=self.config.data.loading.num_workers,
pin_memory=self.config.data.loading.pin_memory,
persistent_workers=True,
prefetch_factor=self.config.data.loading.prefetch_factor,
drop_last=True # Drop incomplete batches
)
def val_dataloader(self):
dataset = TextDataset(self.config, split="validation")
return DataLoader(
dataset,
batch_size=self.config.training.batch_size,
shuffle=False,
num_workers=self.config.data.loading.num_workers,
pin_memory=self.config.data.loading.pin_memory,
persistent_workers=True,
prefetch_factor=self.config.data.loading.prefetch_factor
)