Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from dataclasses import dataclass | |
class GPTConfig: | |
block_size: int = 1024 | |
vocab_size: int = 50257 | |
n_layer: int = 12 | |
n_head: int = 12 | |
n_embd: int = 768 | |
dropout: float = 0.1 | |
bias: bool = True | |
class LayerNorm(nn.Module): | |
def __init__(self, ndim, bias): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(ndim)) | |
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | |
def forward(self, x): | |
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
self.attn_dropout = nn.Dropout(config.dropout) | |
self.resid_dropout = nn.Dropout(config.dropout) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.dropout = config.dropout | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | |
.view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) | |
att = F.softmax(att, dim=-1) | |
att = self.attn_dropout(att) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.resid_dropout(self.c_proj(y)) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, x): | |
x = F.gelu(self.c_fc(x)) | |
x = self.dropout(self.c_proj(x)) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.vocab_size is not None | |
assert config.block_size is not None | |
self.config = config | |
# Add device attribute | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
drop = nn.Dropout(config.dropout), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = LayerNorm(config.n_embd, bias=config.bias), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
# init all weights | |
self.apply(self._init_weights) | |
# apply special scaled init to the residual projections, per GPT-2 paper | |
for pn, p in self.named_parameters(): | |
if pn.endswith('c_proj.weight'): | |
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) | |
# report number of parameters | |
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) | |
def get_num_params(self, non_embedding=True): | |
""" | |
Return the number of parameters in the model. | |
For non-embedding count (default), the position embeddings get subtracted. | |
""" | |
n_params = sum(p.numel() for p in self.parameters()) | |
if non_embedding: | |
n_params -= self.transformer.wpe.weight.numel() | |
return n_params | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def gradient_checkpointing_enable(self): | |
""" | |
Enable gradient checkpointing for memory efficiency | |
""" | |
self.gradient_checkpointing = True | |
def gradient_checkpointing_disable(self): | |
""" | |
Disable gradient checkpointing | |
""" | |
self.gradient_checkpointing = False | |
def forward(self, idx, targets=None): | |
device = idx.device | |
b, t = idx.size() | |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, t, dtype=torch.long, device=device) | |
# forward the GPT model itself | |
tok_emb = self.transformer.wte(idx) | |
pos_emb = self.transformer.wpe(pos) | |
x = self.transformer.drop(tok_emb + pos_emb) | |
# Modified forward pass to use gradient checkpointing | |
if hasattr(self, 'gradient_checkpointing') and self.gradient_checkpointing: | |
for block in self.transformer.h: | |
x = torch.utils.checkpoint.checkpoint(block, x) | |
else: | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
if targets is not None: | |
logits = self.lm_head(x) | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
else: | |
logits = self.lm_head(x[:, [-1], :]) | |
loss = None | |
return logits, loss | |
def crop_block_size(self, block_size): | |
# model surgery to decrease the block size if necessary | |
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) | |
# but want to use a smaller block size for training | |
assert block_size <= self.config.block_size | |
self.config.block_size = block_size | |
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) | |
for block in self.transformer.h: | |
if hasattr(block.attn, 'bias'): | |
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] | |
def from_pretrained(cls, model_type): | |
""" | |
Initialize a pretrained GPT model by copying over the weights | |
from a huggingface/transformers checkpoint. | |
""" | |
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} | |
from transformers import GPT2LMHeadModel | |
# create a from-scratch initialized minGPT model | |
config = GPTConfig() | |
config.block_size = 1024 # always use block size 1024 for GPT2 models | |
# update config based on model type | |
if model_type == 'gpt2': | |
config.n_layer = 12; config.n_head = 12; config.n_embd = 768 | |
elif model_type == 'gpt2-medium': | |
config.n_layer = 24; config.n_head = 16; config.n_embd = 1024 | |
elif model_type == 'gpt2-large': | |
config.n_layer = 36; config.n_head = 20; config.n_embd = 1280 | |
elif model_type == 'gpt2-xl': | |
config.n_layer = 48; config.n_head = 25; config.n_embd = 1600 | |
# create the model | |
model = GPT(config) | |
sd = model.state_dict() | |
# init a huggingface/transformers model | |
model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
sd_hf = model_hf.state_dict() | |
# copy while ensuring all of the parameters are aligned and match in names and shapes | |
keys = [k for k in sd_hf if not k.endswith('attn.masked_bias')] # ignore these | |
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
for k in keys: | |
if any(k.endswith(w) for w in transposed): | |
# special treatment for the Conv1D weights we need to transpose | |
assert sd_hf[k].shape[::-1] == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k].t()) | |
else: | |
# vanilla copy over the other parameters | |
assert sd_hf[k].shape == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k]) | |
return model | |
def to(self, device): | |
"""Override to method to also update device attribute""" | |
self.device = device | |
return super().to(device) |