import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from resnet import custom_ResNet import gradio as gr import os model = custom_ResNet() model.load_state_dict(torch.load("custom_resnet_model.pth", map_location=torch.device('cpu')), strict=False) model.setup(stage="test") inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def inference(input_img, transparency=0.5, target_layer_number=-1, top_classes=3): transform = transforms.ToTensor() org_img = input_img input_img = transform(input_img) input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=1) # Use dim=1 to compute softmax along the classes dimension o = softmax(outputs) confidences = {classes[i]: float(o[0, i]) for i in range(10)} _, prediction = torch.max(outputs, 1) target_layers = [model.convblock2_l1] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency) # Sort the confidences dictionary by values in descending order sorted_confidences = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)} # Take the top `top_classes` elements from the sorted_confidences top_classes_confidences = {k: sorted_confidences[k] for k in list(sorted_confidences)[:top_classes]} return top_classes_confidences, visualization # Create a wrapper function for show_misclassified_images() def show_misclassified_images_wrapper(num_images=10, use_gradcam=False, gradcam_layer=-1, transparency=0.5): transparency = float(transparency) num_images = int(num_images) if use_gradcam == "Yes": use_gradcam = True else: use_gradcam = False return model.show_misclassified_images(num_images, use_gradcam, gradcam_layer, transparency) description1 = "Test the model's prediction. Currently the model only supports the following classes - plane, car, bird, cat, deer, dog, frog, horse, ship, truck." # Define the full path to the images folder #images_folder = "examples" # Define the examples list with full paths examples = [("plane.jpg", 0.5, -1), ("car.jpg", 0.5, -1), ("bird.jpg", 0.5, -1), ("cat.jpg", 0.5, -1), ("deer.jpg", 0.5, -1), ("dog.jpg", 0.5, -1), ("frog.jpg", 0.5, -1), ("horse.jpg", 0.5, -1), ("ship.jpg", 0.5, -1), ("truck.jpg", 0.5, -1)] # Create a separate interface for the "Input an image" tab input_interface = gr.Interface(inference, inputs=[gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?"), gr.Slider(1, 10, value=3, step=1, label="How many top confidence classes to be shown?")], outputs=[gr.Label(), gr.Image(shape=(32, 32), label="Model Prediction").style(width=300, height=300)], description=description1,examples=examples) description2 = "Displays misclassified image of the model" # Create a separate interface for the "Misclassified Images" tab misclassified_interface = gr.Interface(show_misclassified_images_wrapper, inputs=[gr.Number(value=10, label="Number of images to display"), gr.Radio(["Yes", "No"], value="No" , label="Show GradCAM outputs"), gr.Slider(-2, -1, value=-1, step=1, label="Which layer for GradCAM?"), gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM")], outputs=gr.Plot(), description=description2) demo = gr.TabbedInterface([input_interface, misclassified_interface], tab_names=["Input an image", "Misclassified Images"], title="Custom Resnet on CIFAR10 using GradCAM") demo.launch()