|
import torch, torchvision |
|
from torchvision import transforms |
|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image |
|
from pytorch_grad_cam import GradCAM |
|
from pytorch_grad_cam.utils.image import show_cam_on_image |
|
from resnet import custom_ResNet |
|
import gradio as gr |
|
import os |
|
|
|
|
|
model = custom_ResNet() |
|
model.load_state_dict(torch.load("custom_resnet_model.pth", map_location=torch.device('cpu')), strict=False) |
|
model.setup(stage="test") |
|
|
|
inv_normalize = transforms.Normalize( |
|
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], |
|
std=[1/0.23, 1/0.23, 1/0.23] |
|
) |
|
classes = ('plane', 'car', 'bird', 'cat', 'deer', |
|
'dog', 'frog', 'horse', 'ship', 'truck') |
|
|
|
|
|
def inference(input_img, transparency=0.5, target_layer_number=-1, top_classes=3): |
|
transform = transforms.ToTensor() |
|
org_img = input_img |
|
input_img = transform(input_img) |
|
input_img = input_img.unsqueeze(0) |
|
outputs = model(input_img) |
|
softmax = torch.nn.Softmax(dim=1) |
|
o = softmax(outputs) |
|
confidences = {classes[i]: float(o[0, i]) for i in range(10)} |
|
_, prediction = torch.max(outputs, 1) |
|
target_layers = [model.convblock2_l1] |
|
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) |
|
grayscale_cam = cam(input_tensor=input_img, targets=None) |
|
grayscale_cam = grayscale_cam[0, :] |
|
img = input_img.squeeze(0) |
|
img = inv_normalize(img) |
|
rgb_img = np.transpose(img, (1, 2, 0)) |
|
rgb_img = rgb_img.numpy() |
|
visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency) |
|
|
|
|
|
sorted_confidences = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)} |
|
|
|
top_classes_confidences = {k: sorted_confidences[k] for k in list(sorted_confidences)[:top_classes]} |
|
|
|
return top_classes_confidences, visualization |
|
|
|
|
|
|
|
def show_misclassified_images_wrapper(num_images=10, use_gradcam=False, gradcam_layer=-1, transparency=0.5): |
|
transparency = float(transparency) |
|
num_images = int(num_images) |
|
if use_gradcam == "Yes": |
|
use_gradcam = True |
|
else: |
|
use_gradcam = False |
|
|
|
return model.show_misclassified_images(num_images, use_gradcam, gradcam_layer, transparency) |
|
|
|
description1 = "Supported Only - plane, car, bird, cat, deer, dog, frog, horse, ship, truck." |
|
|
|
|
|
|
|
images_folder = "examples" |
|
|
|
|
|
examples = [[os.path.join(images_folder, "plane.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "car.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "bird.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "cat.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "deer.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "dog.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "frog.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "horse.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "ship.jpg"), 0.5, -1], |
|
[os.path.join(images_folder, "truck.jpg"), 0.5, -1]] |
|
|
|
|
|
|
|
input_interface = gr.Interface(inference, |
|
inputs=[gr.Image(shape=(32, 32), label="Input Image"), |
|
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), |
|
gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?"), |
|
gr.Slider(1, 10, value=3, step=1, label="How many classes")], |
|
outputs=[gr.Label(), |
|
gr.Image(shape=(32, 32), label="Predicted Output").style(width=300, height=300)], |
|
description=description1,examples=examples) |
|
|
|
description2 = "Missclassfied Images" |
|
|
|
|
|
misclassified_interface = gr.Interface(show_misclassified_images_wrapper, |
|
inputs=[gr.Number(value=10, label="Number of Images for display"), |
|
gr.Radio(["Yes", "No"], value="No" , label="Show GradCAM outputs"), |
|
gr.Slider(-2, -1, value=-1, step=1, label="Which layer for GradCAM?"), |
|
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM")], |
|
outputs=gr.Plot(), description=description2) |
|
|
|
demo = gr.TabbedInterface([input_interface, misclassified_interface], tab_names=["Input an image", "Misclassified Images"], |
|
title="Gradcam using Cifar10 with CustomResnet Model") |
|
|
|
demo.launch() |