import gradio as gr import requests from torch import nn from torch.nn import CrossEntropyLoss from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM, T5Config import torch MAX_SOURCE_LENGTH = 512 class ReviewerModel(T5ForConditionalGeneration): def __init__(self, config): super().__init__(config) self.cls_head = nn.Linear(self.config.d_model, 2, bias=True) self.init() def init(self): nn.init.xavier_uniform_(self.lm_head.weight) factor = self.config.initializer_factor self.cls_head.weight.data.normal_(mean=0.0, \ std=factor * ((self.config.d_model) ** -0.5)) self.cls_head.bias.data.zero_() def forward( self, *argv, **kwargs ): r""" Doc from Huggingface transformers: labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ..., config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Returns: Examples:: >>> from transformers import T5Tokenizer, T5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5ForConditionalGeneration.from_pretrained('t5-small') >>> # training >>> input_ids = tokenizer('The walks in park', return_tensors='pt').input_ids >>> labels = tokenizer(' cute dog the ', return_tensors='pt').input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you. """ if "cls" in kwargs: assert ( "input_ids" in kwargs and \ "labels" in kwargs and \ "attention_mask" in kwargs ) return self.cls( input_ids=kwargs["input_ids"], labels=kwargs["labels"], attention_mask=kwargs["attention_mask"], ) if "input_labels" in kwargs: assert ( "input_ids" in kwargs and \ "input_labels" in kwargs and \ "decoder_input_ids" in kwargs and \ "attention_mask" in kwargs and \ "decoder_attention_mask" in kwargs ), "Please give these arg keys." input_ids = kwargs["input_ids"] input_labels = kwargs["input_labels"] decoder_input_ids = kwargs["decoder_input_ids"] attention_mask = kwargs["attention_mask"] decoder_attention_mask = kwargs["decoder_attention_mask"] if "encoder_loss" not in kwargs: encoder_loss = True else: encoder_loss = kwargs["encoder_loss"] return self.review_forward(input_ids, input_labels, decoder_input_ids, attention_mask, decoder_attention_mask, encoder_loss) return super().forward(*argv, **kwargs) def cls( self, input_ids, labels, attention_mask, ): encoder_outputs = self.encoder( \ input_ids=input_ids, attention_mask=attention_mask, output_attentions=False, return_dict=False ) hidden_states = encoder_outputs[0] first_hidden = hidden_states[:, 0, :] first_hidden = nn.Dropout(0.3)(first_hidden) logits = self.cls_head(first_hidden) loss_fct = CrossEntropyLoss() if labels != None: loss = loss_fct(logits, labels) return loss return logits def review_forward( self, input_ids, input_labels, decoder_input_ids, attention_mask, decoder_attention_mask, encoder_loss=True ): encoder_outputs = self.encoder( \ input_ids=input_ids, attention_mask=attention_mask, output_attentions=False, return_dict=False ) hidden_states = encoder_outputs[0] decoder_inputs = self._shift_right(decoder_input_ids) # Decode decoder_outputs = self.decoder( input_ids=decoder_inputs, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, output_attentions=False, return_dict=False ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # this is True default sequence_output = sequence_output * (self.model_dim ** -0.5) if encoder_loss: # print(self.encoder.get_input_embeddings().weight.shape) cls_logits = nn.functional.linear(hidden_states, self.encoder.get_input_embeddings().weight) # cls_logits = self.cls_head(hidden_states) lm_logits = self.lm_head(sequence_output) if decoder_input_ids is not None: lm_loss_fct = CrossEntropyLoss(ignore_index=0) # Warning: PAD_ID should be 0 loss = lm_loss_fct(lm_logits.view(-1, lm_logits.size(-1)), decoder_input_ids.view(-1)) if encoder_loss and input_labels is not None: cls_loss_fct = CrossEntropyLoss(ignore_index=-100) loss += cls_loss_fct(cls_logits.view(-1, cls_logits.size(-1)), input_labels.view(-1)) return loss return cls_logits, lm_logits def prepare_models(): tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer") tokenizer.special_dict = { f"": tokenizer.get_vocab()[f""] for i in range(99, -1, -1) } tokenizer.mask_id = tokenizer.get_vocab()[""] tokenizer.bos_id = tokenizer.get_vocab()[""] tokenizer.pad_id = tokenizer.get_vocab()[""] tokenizer.eos_id = tokenizer.get_vocab()[""] tokenizer.msg_id = tokenizer.get_vocab()[""] tokenizer.keep_id = tokenizer.get_vocab()[""] tokenizer.add_id = tokenizer.get_vocab()[""] tokenizer.del_id = tokenizer.get_vocab()[""] tokenizer.start_id = tokenizer.get_vocab()[""] tokenizer.end_id = tokenizer.get_vocab()[""] config = T5Config.from_pretrained("microsoft/codereviewer") model = ReviewerModel.from_pretrained("microsoft/codereviewer", config=config) model.eval() return tokenizer, model def pad_assert(tokenizer, source_ids): source_ids = source_ids[:MAX_SOURCE_LENGTH - 2] source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id] pad_len = MAX_SOURCE_LENGTH - len(source_ids) source_ids += [tokenizer.pad_id] * pad_len assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length." return source_ids def encode_diff(tokenizer, diff, msg, source): difflines = diff.split("\n")[1:] # remove start @@ difflines = [line for line in difflines if len(line.strip()) > 0] map_dic = {"-": 0, "+": 1, " ": 2} def f(s): if s in map_dic: return map_dic[s] else: return 2 labels = [f(line[0]) for line in difflines] difflines = [line[1:].strip() for line in difflines] inputstr = "" + source + "" inputstr += "" + msg for label, line in zip(labels, difflines): if label == 1: inputstr += "" + line elif label == 0: inputstr += "" + line else: inputstr += "" + line source_ids = tokenizer.encode(inputstr, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1] source_ids = pad_assert(tokenizer, source_ids) return source_ids class FileDiffs(object): def __init__(self, diff_string): diff_array = diff_string.split("\n") self.file_name = diff_array[0] self.file_path = self.file_name.split("a/", 1)[1].rsplit("b/", 1)[0] self.diffs = list() for line in diff_array[4:]: if line.startswith("@@"): self.diffs.append(str()) self.diffs[-1] += "\n" + line def review_commit(user="p4vv37", repository="ueflow", commit="610a8c7b02b946bc9e5e26e6dacbba0e2abba259"): tokenizer, model = prepare_models() # Get diff and commit metadata from GitHub API commit_metadata = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}").json() msg = commit_metadata["commit"]["message"] diff_data = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}", headers={"Accept": "application/vnd.github.diff"}) code_diff = diff_data.text # Parse diff into FileDiffs objects files_diffs = list() for file in code_diff.split("diff --git"): if len(file) > 0: fd = FileDiffs(file) files_diffs.append(fd) # Generate comments for each diff output = "" for fd in files_diffs: output += F"File:{fd.file_path}\n" source = requests.get(F"https://raw.githubusercontent.com/{user}/{repository}/^{commit}/{fd.file_path}").text for diff in fd.diffs: inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu") inputs_mask = inputs.ne(tokenizer.pad_id) logits = model( input_ids=inputs, cls=True, attention_mask=inputs_mask, labels=None, use_cache=True, num_beams=5, early_stopping=True, max_length=100 ) needs_review = torch.argmax(logits, dim=-1).cpu().numpy()[0] if not needs_review: continue preds = model.generate(inputs, attention_mask=inputs_mask, use_cache=True, num_beams=5, early_stopping=True, max_length=100, num_return_sequences=2 ) preds = list(preds.cpu().numpy()) pred_nls = [tokenizer.decode(_id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False) for _id in preds] output += diff + "\n#######\nComment:\n#######\n" + pred_nls[0] + "\n#######\n" return output description = "An interface for running " \ "\"Microsoft CodeBERT CodeReviewer: Pre-Training for Automating Code Review Activities.\" " \ "(microsoft/codereviewer) on GitHub commits." examples = [ ["p4vv37", "ueflow", "610a8c7b02b946bc9e5e26e6dacbba0e2abba259"], ["microsoft", "vscode", "378b0d711f6b82ac59b47fb246906043a6fb995a"], ] iface = gr.Interface(fn=review_commit, description=description, inputs=["text", "text", "text"], outputs="text", examples=examples, cache_examples=False) iface.launch()