colqwen-pixtral / app.py
p3nguknight's picture
Fix typo
83580ca
raw
history blame
7.43 kB
import base64
from typing import cast
import pathlib
import gradio as gr
import spaces
import torch
from colpali_engine.models import ColQwen2, ColQwen2Processor
from mistral_common.protocol.instruct.messages import (
ImageURLChunk,
TextChunk,
UserMessage,
)
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_inference.generate import generate
from mistral_inference.transformer import Transformer
from pdf2image import convert_from_path
from torch.utils.data import DataLoader
from tqdm import tqdm
PIXTAL_MODEL_ID = "mistral-community--pixtral-12b-240910"
PIXTRAL_MODEL_SNAPSHOT = "95758896fcf4691ec9674f29ec90d1441d9d26d2"
PIXTRAL_MODEL_PATH = (
pathlib.Path().home()
/ f".cache/huggingface/hub/models--{PIXTAL_MODEL_ID}/snapshots/{PIXTRAL_MODEL_SNAPSHOT}"
)
COLQWEN_BASE_MODEL_ID = "vidore--colqwen2-base"
COLQWEN_BASE_MODEL_SNAPSHOT = "c722b912b50b14e404b91679db710fa2e1c6a762"
COLQWEN_BASE_MODEL_PATH = (
pathlib.Path().home()
/ f".cache/huggingface/hub/models--{COLQWEN_BASE_MODEL_ID}/snapshots/{COLQWEN_BASE_MODEL_SNAPSHOT}"
)
COLQWEN_MODEL_ID = "vidore--colqwen2-v0.1"
COLQWEN_MODEL_SNAPSHOT = "6b9ef3c32c97c0bb3be99bc35a05d9f30e0cada5"
COLQWEN_MODEL_PATH = (
pathlib.Path().home()
/ f".cache/huggingface/hub/models--{COLQWEN_MODEL_ID}/snapshots/{COLQWEN_MODEL_SNAPSHOT}"
)
def image_to_base64(image_path):
with open(image_path, "rb") as img:
encoded_string = base64.b64encode(img.read()).decode("utf-8")
return f"data:image/jpeg;base64,{encoded_string}"
@spaces.GPU(duration=60)
def pixtral_inference(
images,
text,
):
if len(images) == 0:
raise gr.Error("No images for generation")
if text == "":
raise gr.Error("No query for generation")
tokenizer = MistralTokenizer.from_file(f"{PIXTRAL_MODEL_PATH}/tekken.json")
model = Transformer.from_folder(PIXTRAL_MODEL_PATH)
messages = [
UserMessage(
content=[ImageURLChunk(image_url=image_to_base64(i[0])) for i in images]
+ [TextChunk(text=text)]
)
]
completion_request = ChatCompletionRequest(messages=messages)
encoded = tokenizer.encode_chat_completion(completion_request)
images = encoded.images
tokens = encoded.tokens
out_tokens, _ = generate(
[tokens],
model,
images=[images],
max_tokens=512,
temperature=0.45,
eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id,
)
result = tokenizer.decode(out_tokens[0])
return result
@spaces.GPU(duration=60)
def retrieve(query: str, ds, images, k):
if len(images) == 0:
raise gr.Error("No docs/images for retrieval")
if query == "":
raise gr.Error("No query for retrieval")
model = ColQwen2.from_pretrained(
COLQWEN_BASE_MODEL_PATH,
torch_dtype=torch.bfloat16,
device_map="cuda",
).eval()
model.load_adapter(COLQWEN_MODEL_PATH)
model = model.eval()
processor = cast(
ColQwen2Processor, ColQwen2Processor.from_pretrained(COLQWEN_MODEL_PATH)
)
qs = []
with torch.no_grad():
batch_query = processor.process_queries([query])
batch_query = {k: v.to("cuda") for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
scores = processor.score(qs, ds).numpy()
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
results = []
for idx in top_k_indices:
results.append((images[idx], f"Score {scores[0][idx]:.2f}"))
del model
del processor
torch.cuda.empty_cache()
return results
def index(files, ds):
images = convert_files(files)
return index_gpu(images, ds)
def convert_files(files):
images = []
for f in files:
images.extend(convert_from_path(f, thread_count=4))
if len(images) >= 150:
raise gr.Error("The number of images in the dataset should be less than 150.")
return images
@spaces.GPU(duration=60)
def index_gpu(images, ds):
model = ColQwen2.from_pretrained(
COLQWEN_BASE_MODEL_PATH,
torch_dtype=torch.bfloat16,
device_map="cuda",
).eval()
model.load_adapter(COLQWEN_MODEL_PATH)
model = model.eval()
processor = cast(
ColQwen2Processor, ColQwen2Processor.from_pretrained(COLQWEN_MODEL_PATH)
)
# run inference - docs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: processor.process_images(x),
)
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to("cuda") for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
del model
del processor
torch.cuda.empty_cache()
return f"Uploaded and converted {len(images)} pages", ds, images
def get_example():
return [
[["plants_and_people.pdf"], "What is the global population in 2050 ? "],
[["plants_and_people.pdf"], "Where was Teosinte domesticated ?"],
]
css = """
#title-container {
margin: 0 auto;
max-width: 800px;
text-align: center;
}
#col-container {
margin: 0 auto;
max-width: 600px;
}
"""
file = gr.File(file_types=["pdf"], file_count="multiple", label="PDFs")
query = gr.Textbox("", placeholder="Enter your query here", label="Query")
with gr.Blocks(
title="Document Question Answering with ColQwen & Pixtral",
theme=gr.themes.Soft(),
css=css,
) as demo:
with gr.Row(elem_id="title-container"):
gr.Markdown("""# Document Question Answering with ColQwen & Pixtral""")
with gr.Column(elem_id="col-container"):
with gr.Row():
gr.Examples(
examples=get_example(),
inputs=[file, query],
)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Index PDFs")
file.render()
convert_button = gr.Button("πŸ”„ Run", variant="primary")
message = gr.Textbox("Files not yet uploaded", label="Status")
embeds = gr.State(value=[])
imgs = gr.State(value=[])
img_chunk = gr.State(value=[])
with gr.Column(scale=3):
gr.Markdown("## Retrieve with ColQwen and answer with Pixtral")
query.render()
k = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Number of docs to retrieve",
value=1,
)
answer_button = gr.Button("πŸƒ Run", variant="primary")
output_gallery = gr.Gallery(
label="Retrieved docs", height=400, show_label=True, interactive=False
)
output = gr.Textbox(label="Answer", lines=2, interactive=False)
convert_button.click(
index, inputs=[file, embeds], outputs=[message, embeds, imgs]
)
answer_button.click(
retrieve, inputs=[query, embeds, imgs, k], outputs=[output_gallery]
).then(pixtral_inference, inputs=[output_gallery, query], outputs=[output])
if __name__ == "__main__":
demo.queue(max_size=10).launch()