Spaces:
Running
Running
File size: 4,319 Bytes
2b5f3b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
from PIL import Image
import numpy as np
import torch
from transformers import (
AutoImageProcessor,
)
import gradio as gr
from modeling_siglip import SiglipForImageClassification
HF_TOKEN = os.environ.get("HF_READ_TOKEN")
EXAMPLES = [["./images/sample.jpg"], ["./images/sample2.webp"]]
model_maps: dict[str, dict] = {
"test2": {
"repo": "p1atdev/siglip-tagger-test-2",
},
"test3": {
"repo": "p1atdev/siglip-tagger-test-3",
},
# "test4": {
# "repo": "p1atdev/siglip-tagger-test-4",
# },
}
for key in model_maps.keys():
model_maps[key]["model"] = SiglipForImageClassification.from_pretrained(
model_maps[key]["repo"], torch_dtype=torch.bfloat16, token=HF_TOKEN
)
model_maps[key]["processor"] = AutoImageProcessor.from_pretrained(
model_maps[key]["repo"], token=HF_TOKEN
)
README_MD = (
f"""\
## SigLIP Tagger Test 3
An experimental model for tagging danbooru tags of images using SigLIP.
Model(s):
"""
+ "\n".join(
f"- [{value['repo']}](https://huggingface.co./{value['repo']})"
for value in model_maps.values()
)
+ "\n"
+ """
Example images by NovelAI and niji・journey.
"""
)
def compose_text(results: dict[str, float], threshold: float = 0.3):
return ", ".join(
[
key
for key, value in sorted(results.items(), key=lambda x: x[1], reverse=True)
if value > threshold
]
)
@torch.no_grad()
def predict_tags(image: Image.Image, model_name: str, threshold: float):
if image is None:
return None, None
inputs = model_maps[model_name]["processor"](image, return_tensors="pt")
logits = (
model_maps[model_name]["model"](
**inputs.to(
model_maps[model_name]["model"].device,
model_maps[model_name]["model"].dtype,
)
)
.logits.detach()
.cpu()
.float()
)
logits = np.clip(logits, 0.0, 1.0)
results = {}
for prediction in logits:
for i, prob in enumerate(prediction):
if prob.item() > 0:
results[model_maps[model_name]["model"].config.id2label[i]] = (
prob.item()
)
return compose_text(results, threshold), results
css = """\
.sticky {
position: sticky;
top: 16px;
}
.gradio-container {
overflow: clip;
}
"""
def demo():
with gr.Blocks(css=css) as ui:
gr.Markdown(README_MD)
with gr.Row():
with gr.Column():
with gr.Row(elem_classes="sticky"):
with gr.Column():
input_img = gr.Image(
label="Input image", type="pil", height=480
)
with gr.Group():
model_name_radio = gr.Radio(
label="Model",
choices=list(model_maps.keys()),
value="test3",
)
tag_threshold_slider = gr.Slider(
label="Tags threshold",
minimum=0.0,
maximum=1.0,
value=0.3,
step=0.01,
)
start_btn = gr.Button(value="Start", variant="primary")
gr.Examples(
examples=EXAMPLES,
inputs=[input_img],
cache_examples=False,
)
with gr.Column():
output_tags = gr.Text(label="Output text", interactive=False)
output_label = gr.Label(label="Output tags")
start_btn.click(
fn=predict_tags,
inputs=[input_img, model_name_radio, tag_threshold_slider],
outputs=[output_tags, output_label],
)
ui.launch(
debug=True,
# share=True
)
if __name__ == "__main__":
demo()
|