Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +95 -67
- budget_prediction_model.joblib +2 -2
app.py
CHANGED
@@ -35,16 +35,25 @@ with col1:
|
|
35 |
long = st.number_input("Conference Duration, Days", min_value=0, value=3)
|
36 |
|
37 |
# Dropdown menus
|
38 |
-
event_type = st.selectbox("Event Type", ["Conference", "Workshop", "Other"])
|
39 |
-
cntry = st.selectbox("Conference Location Country", ["USA", "China", "India", "Other"])
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
# Checkboxes
|
42 |
-
st.
|
43 |
kw_comp = st.checkbox("Computing")
|
44 |
-
|
45 |
kw_app = st.checkbox("Applications")
|
46 |
kw_computational = st.checkbox("Computational")
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
submit = st.button("Submit")
|
@@ -52,66 +61,85 @@ submit = st.button("Submit")
|
|
52 |
# If the submit button is clicked, show output in the second column (col2)
|
53 |
with col2:
|
54 |
if submit:
|
55 |
-
|
56 |
-
|
57 |
-
regressor = joblib.load("budget_prediction_model.joblib")
|
58 |
-
except:
|
59 |
-
p = False
|
60 |
-
|
61 |
-
if not p:
|
62 |
-
st.write('Check the model path')
|
63 |
else:
|
64 |
-
atnd_num = atnd_num / 1.1
|
65 |
-
ppr_num = ppr_num / 1.08
|
66 |
-
|
67 |
-
|
68 |
-
data = pd.DataFrame([{'act_atnd_tot_atnd_num': atnd_num,
|
69 |
-
'long_atnd_ratio':long/atnd_num,
|
70 |
-
'act_paprs_num': ppr_num,
|
71 |
-
'longevity': long,
|
72 |
-
'papr_atnd_ratio':ppr_num/atnd_num,
|
73 |
-
'exh_num': exh_num,
|
74 |
-
'exh_atnd_ratio': exh_num/atnd_num,
|
75 |
-
'conf_loc_cntry_nm_USA': int(cntry == "USA"),
|
76 |
-
'computing': int(kw_comp),
|
77 |
-
'conf_evnt_typ_nm_Workshop': int(event_type == "Workshop"),
|
78 |
-
'conf_loc_state_nm_CA': int(loc_state == "CA"),
|
79 |
-
'education': int(kw_edu),
|
80 |
-
'applications': int(kw_app),
|
81 |
-
'conf_loc_state_nm_NJ': int(loc_state == "NJ"),
|
82 |
-
'computational': int(kw_computational),
|
83 |
-
'systems': int(kw_sys),
|
84 |
-
'conf_loc_cntry_nm_China': int(cntry == "China"),
|
85 |
-
'conf_loc_cntry_nm_India': int(cntry == "India")
|
86 |
-
}])
|
87 |
-
|
88 |
-
lambdas = pd.read_csv('lambdas_yeojohnson.csv', header=None, index_col=0)
|
89 |
-
lambdas = lambdas.to_dict()[1]
|
90 |
-
|
91 |
-
for n in ['act_atnd_tot_atnd_num', 'exh_num', 'act_paprs_num']:
|
92 |
-
data[n] = yeojohnson(data[n], lambdas[n])
|
93 |
-
data.longevity -= 1
|
94 |
-
|
95 |
-
# Predict income
|
96 |
-
income = regressor.predict(data)[0]
|
97 |
-
income = inv_transform.inv_yeojohnson(income, lambdas['fin_inc_tot_amt'])
|
98 |
-
|
99 |
-
reg_fees_inc = income * 0.74
|
100 |
-
exh_inc = min(exh_num * 3000, income - reg_fees_inc)
|
101 |
-
|
102 |
-
expenses = income * 0.833
|
103 |
-
local_arr_exp = expenses * 0.331
|
104 |
-
socl_funcs_exp = expenses * 0.383
|
105 |
-
admintn_exp = expenses * 0.091
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
long = st.number_input("Conference Duration, Days", min_value=0, value=3)
|
36 |
|
37 |
# Dropdown menus
|
38 |
+
event_type = st.selectbox("Event Type", ["Conference", "Workshop", "Forum", "Other"])
|
39 |
+
cntry = st.selectbox("Conference Location Country", ["USA", "China", "India", "Romania", "Other"])
|
40 |
+
if cntry =="USA":
|
41 |
+
loc_state = st.selectbox("Conference Location State", [ "CA", "NJ", "NY", "FL", "Other"], index=4)
|
42 |
+
else:
|
43 |
+
loc_state = "Other"
|
44 |
+
|
45 |
# Checkboxes
|
46 |
+
st.markdown("<h4>Keywords</h4>", unsafe_allow_html=True)
|
47 |
kw_comp = st.checkbox("Computing")
|
48 |
+
kw_sys = st.checkbox("Systems")
|
49 |
kw_app = st.checkbox("Applications")
|
50 |
kw_computational = st.checkbox("Computational")
|
51 |
+
kw_wless = st.checkbox("Wireless")
|
52 |
+
kw_mdl = st.checkbox("Modeling")
|
53 |
+
kw_ntwk = st.checkbox("Networking")
|
54 |
+
kw_des = st.checkbox("Design")
|
55 |
+
kw_adv = st.checkbox("Advanced")
|
56 |
+
kw_dist = st.checkbox("Distributed")
|
57 |
|
58 |
|
59 |
submit = st.button("Submit")
|
|
|
61 |
# If the submit button is clicked, show output in the second column (col2)
|
62 |
with col2:
|
63 |
if submit:
|
64 |
+
if cntry != "USA" and loc_state != "Other":
|
65 |
+
st.error("Correct Event Location: Country and State!")
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
try:
|
69 |
+
p = True
|
70 |
+
regressor = joblib.load("budget_prediction_model.joblib")
|
71 |
+
except:
|
72 |
+
p = False
|
73 |
+
|
74 |
+
if not p:
|
75 |
+
st.write('Check the model path')
|
76 |
+
st.error("Model doesn't Exist!")
|
77 |
+
else:
|
78 |
+
atnd_num = atnd_num / 1.1
|
79 |
+
ppr_num = ppr_num / 1.08
|
80 |
+
|
81 |
+
data = pd.DataFrame([{'act_atnd_tot_atnd_num': atnd_num,
|
82 |
+
'long_atnd_ratio':long/atnd_num,
|
83 |
+
'act_paprs_num': ppr_num,
|
84 |
+
'longevity': long,
|
85 |
+
'papr_atnd_ratio':ppr_num/atnd_num,
|
86 |
+
'exh_num': exh_num,
|
87 |
+
'exh_atnd_ratio': exh_num/atnd_num,
|
88 |
+
'computing': int(kw_comp),
|
89 |
+
'conf_loc_cntry_nm_USA': int(cntry == "USA"),
|
90 |
+
'conf_loc_cntry_nm_India': int(cntry == "India"),
|
91 |
+
'conf_evnt_typ_nm_Workshop': int(event_type == "Workshop"),
|
92 |
+
'conf_loc_state_nm_CA': int(loc_state == "CA"),
|
93 |
+
'conf_loc_state_nm_NJ': int(loc_state == "NJ"),
|
94 |
+
'systems': int(kw_sys),
|
95 |
+
'applications': int(kw_app),
|
96 |
+
'computational': int(kw_computational),
|
97 |
+
'conf_loc_cntry_nm_China': int(cntry == "China"),
|
98 |
+
'wireless': int(kw_wless),
|
99 |
+
'conf_loc_cntry_nm_Romania': int(cntry == "Romania"),
|
100 |
+
'conf_loc_state_nm_FL': int(loc_state == "FL"),
|
101 |
+
'modeling': int(kw_mdl),
|
102 |
+
'networking': int(kw_ntwk),
|
103 |
+
'design': int(kw_des),
|
104 |
+
'conf_loc_state_nm_NY': int(loc_state == "NY"),
|
105 |
+
'conf_evnt_typ_nm_Forum': int(event_type == "Forum"),
|
106 |
+
'advanced': int(kw_adv),
|
107 |
+
'distributed': int(kw_dist)
|
108 |
+
|
109 |
+
}])
|
110 |
+
|
111 |
+
|
112 |
+
lambdas = pd.read_csv('lambdas_yeojohnson.csv', header=None, index_col=0)
|
113 |
+
lambdas = lambdas.to_dict()[1]
|
114 |
+
|
115 |
+
for n in ['act_atnd_tot_atnd_num', 'exh_num', 'act_paprs_num']:
|
116 |
+
data[n] = yeojohnson(data[n], lambdas[n])
|
117 |
+
data.longevity -= 1
|
118 |
+
|
119 |
+
# Predict income
|
120 |
+
income = regressor.predict(data)[0]
|
121 |
+
income = inv_transform.inv_yeojohnson(income, lambdas['fin_inc_tot_amt'])
|
122 |
+
|
123 |
+
reg_fees_inc = income * 0.74
|
124 |
+
exh_inc = min(exh_num * 3000, income - reg_fees_inc)
|
125 |
+
|
126 |
+
expenses = income * 0.833
|
127 |
+
local_arr_exp = expenses * 0.331
|
128 |
+
socl_funcs_exp = expenses * 0.383
|
129 |
+
admintn_exp = expenses * 0.091
|
130 |
+
audit_exp = max(expenses*0.007, 6000)
|
131 |
+
|
132 |
+
# Display results
|
133 |
+
st.markdown("### Predicted Budget*")
|
134 |
+
st.markdown("<h4>Income Structure</h4>", unsafe_allow_html=True)
|
135 |
+
st.write(f"**Total Income: ${round(round(income, -3))}**")
|
136 |
+
st.write(f"Registration Fees Income: ${round(round(reg_fees_inc, -3))}")
|
137 |
+
st.write(f"Exhibit Income: ${round(round(exh_inc, -3))}")
|
138 |
+
st.markdown("<h4>Expenses Structure</h4>", unsafe_allow_html=True)
|
139 |
+
st.write(f"**Total Expenses: ${round(round(expenses, -3))}**")
|
140 |
+
st.write(f"Local Arrangement Amount: ${round(round(local_arr_exp, -3))}")
|
141 |
+
st.write(f"Social Functions Amount: ${round(round(socl_funcs_exp, -3))}")
|
142 |
+
st.write(f"Administration Amount: ${round(round(admintn_exp, -3))}")
|
143 |
+
st.write(f"Audit Fees Amount: ${round(round(audit_exp, -3))}")
|
144 |
+
st.write("")
|
145 |
+
st.write("***The numbers are approximate and should be adjusted according to event needs**")
|
budget_prediction_model.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1638cad00656550f71eedb730ffbb33b9fc0b42f23dc6397d975586487c842bb
|
3 |
+
size 29676185
|