oscarvillafuerte commited on
Commit
d090700
verified
1 Parent(s): 75f088b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -0
app.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
4
+ import numpy as np
5
+
6
+ def preprocesa_img(img_path):
7
+ img = load_img(img_path, color_mode="grayscale", target_size=(28, 28))
8
+ img_array = img_to_array(img)
9
+ img_array = 255 - img_array
10
+ img_array = img_array.reshape(1, 784) / 255.0
11
+ return img_array
12
+
13
+ model = tf.keras.models.load_model("identificadordigitos.h5")
14
+ st.title("Clasificaci贸n de im谩genes de d铆gitos")
15
+
16
+ uploaded_file = st.file_uploader("Subir una imagen de un d铆gito", type=["jpg", "png"])
17
+
18
+ if uploaded_file is not None:
19
+ image_array = preprocesa_img(uploaded_file)
20
+
21
+ st.write("Imagen preprocesada:", image_array)
22
+
23
+ preliminar = model.predict(image_array)
24
+
25
+ st.write("Predicci贸n del modelo (vector de probabilidades):", preliminar)
26
+ prediccion = np.argmax(preliminar, axis=1)[0]
27
+ st.success(f"Predicci贸n: {prediccion}")