Spaces:
Runtime error
Runtime error
import IPython | |
import sys | |
import subprocess | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "--force-reinstall", "git+https://github.com/osanseviero/tortoise-tts.git"]) | |
# entmax could not be installed at same time as torch | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "entmax"]) | |
from tortoise_tts.api import TextToSpeech | |
from tortoise_tts.utils.audio import load_audio, get_voices | |
import torch | |
import torchaudio | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# This will download all the models used by Tortoise from the HF hub | |
tts = TextToSpeech(autoregressive_batch_size=16, device=device) | |
voices = [ | |
"angie", | |
"daniel", | |
"deniro", | |
"emma", | |
"freeman", | |
"geralt", | |
"halle", | |
"jlaw", | |
"lj", | |
"snakes", | |
"tom", | |
"William", | |
] | |
voice_paths = get_voices() | |
print(voice_paths) | |
preset = "ultra_fast" | |
def inference(text, voice): | |
text = text[:256] | |
cond_paths = voice_paths[voice] | |
conds = [] | |
print(voice_paths, voice, cond_paths) | |
for cond_path in cond_paths: | |
c = load_audio(cond_path, 22050) | |
conds.append(c) | |
print(text, conds, preset) | |
gen = tts.tts_with_preset(text, conds, preset) | |
print("gen") | |
torchaudio.save('generated.wav', gen.squeeze(0).cpu(), 24000) | |
return "generated.wav" | |
text = "Joining two modalities results in a surprising increase in generalization! What would happen if we combined them all?" | |
iface = gr.Interface( | |
inference, | |
inputs=[ | |
gr.inputs.Textbox(type="str", default=text, label="Text", lines=3), | |
gr.inputs.Dropdown(voices), | |
], | |
outputs="text", | |
title="TorToiSe", | |
description="A multi-voice TTS system trained with an emphasis on quality", | |
article="This demo shows the ultra fast option in the TorToiSe system. For more info check the <a href='https://github.com/neonbjb/tortoise-tts' target='_blank'>Repository</a>.", | |
enable_queue=True, | |
) | |
iface.launch() | |