import numpy as np import matplotlib.pyplot as plt import gradio as gr description = """## Token Probability Distribution Explorer This interactive tool lets you visualize how different parameters affect the probability distribution of tokens. - **Temperature**: Controls the randomness of predictions. Higher values (e.g., 2.0) make the distribution more uniform, while lower values (e.g., 0.1) make it peakier. - **Top-k**: Limits the number of most likely tokens to consider. For example, `top_k=5` means only the top 5 tokens are considered, and others are set to zero probability. - **Top-p (nucleus sampling)**: Limits the tokens to those whose cumulative probability mass is below a certain threshold. For instance, `top_p=0.9` means only tokens contributing to the top 90% of probability are considered. Adjust the sliders to see how each parameter influences the token probabilities. All tokens will always have some non-zero probability in the initial distribution. To learn more about LLM generation, check out the early release of [Hands-On Generative AI with Transformers and Diffusion Models](https://learning.oreilly.com/library/view/hands-on-generative-ai/9781098149239/). """ def get_initial_distribution(num_tokens=10, min_prob=1e-3, seed=42): np.random.seed(seed) # For reproducibility # Ensure each token has at least `min_prob` baseline_probs = np.full(num_tokens, min_prob) remaining_prob = 1.0 - num_tokens * min_prob # Distribute the remaining probability randomly if remaining_prob > 0: random_probs = np.random.rand(num_tokens) random_probs /= np.sum(random_probs) # Normalize to sum to 1 token_probs = baseline_probs + remaining_prob * random_probs else: # If min_prob is too high, adjust probabilities to sum to 1 token_probs = baseline_probs token_probs /= np.sum(token_probs) return token_probs def adjust_distribution(temperature, top_k, top_p, initial_probs): if temperature == 0: # Greedy sampling: pick the token with the highest probability max_index = np.argmax(initial_probs) token_probs = np.zeros_like(initial_probs) token_probs[max_index] = 1.0 else: # Apply temperature scaling token_probs = np.exp(np.log(initial_probs) / temperature) token_probs /= np.sum(token_probs) # Apply Top-K filtering if top_k > 0: top_k_indices = np.argsort(token_probs)[-top_k:] top_k_probs = np.zeros_like(token_probs) top_k_probs[top_k_indices] = token_probs[top_k_indices] top_k_probs /= np.sum(top_k_probs) # Normalize after filtering token_probs = top_k_probs # Apply top_p (nucleus) filtering if top_p < 1.0: # Sort probabilities in descending order and compute cumulative sum sorted_indices = np.argsort(token_probs)[::-1] cumulative_probs = np.cumsum(token_probs[sorted_indices]) # Find the cutoff index for nucleus sampling cutoff_index = np.searchsorted(cumulative_probs, top_p) + 1 # Get the indices that meet the threshold top_p_indices = sorted_indices[:cutoff_index] top_p_probs = np.zeros_like(token_probs) top_p_probs[top_p_indices] = token_probs[top_p_indices] top_p_probs /= np.sum(top_p_probs) # Normalize after filtering token_probs = top_p_probs # Plotting the probabilities plt.figure(figsize=(10, 6)) plt.bar(range(10), token_probs, tick_label=[f'Token {i}' for i in range(10)]) plt.xlabel('Tokens') plt.ylabel('Probabilities') plt.title('Token Probability Distribution') plt.ylim(0, 1) plt.grid(True) plt.tight_layout() return plt initial_probs = get_initial_distribution() def update_plot(temperature=1.0, top_k=8, top_p=0.9): return adjust_distribution(temperature, top_k, top_p, initial_probs) # Generate an initial plot with default values initial_plot = update_plot() interface = gr.Interface( fn=update_plot, inputs=[ gr.Slider(0, 5.0, step=0.1, value=1.0, label="Temperature"), gr.Slider(0, 10, step=1, value=8, label="Top-k"), gr.Slider(0.0, 1.0, step=0.01, value=0.9, label="Top-p"), ], outputs=gr.Plot(value=initial_plot, label="Token Probability Distribution"), live=True, title="Explore generation parameters of LLMs", description=description, ) interface.launch()