Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict, List, Optional | |
import math | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from .noisy_channel_beam_search import NoisyChannelBeamSearch | |
from fairseq.sequence_generator import EnsembleModel | |
class NoisyChannelSequenceGenerator(object): | |
def __init__( | |
self, | |
combine_method, | |
tgt_dict, | |
src_dict=None, | |
beam_size=1, | |
max_len_a=0, | |
max_len_b=200, | |
min_len=1, | |
len_penalty=1.0, | |
unk_penalty=0.0, | |
retain_dropout=False, | |
temperature=1.0, | |
match_source_len=False, | |
no_repeat_ngram_size=0, | |
normalize_scores=True, | |
channel_models=None, | |
k2=10, | |
ch_weight=1.0, | |
channel_scoring_type='log_norm', | |
top_k_vocab=0, | |
lm_models=None, | |
lm_dict=None, | |
lm_weight=1.0, | |
normalize_lm_scores_by_tgt_len=False, | |
): | |
"""Generates translations of a given source sentence, | |
using beam search with noisy channel decoding. | |
Args: | |
combine_method (string, optional): Method to combine direct, LM and | |
channel model scores (default: None) | |
tgt_dict (~fairseq.data.Dictionary): target dictionary | |
src_dict (~fairseq.data.Dictionary): source dictionary | |
beam_size (int, optional): beam width (default: 1) | |
max_len_a/b (int, optional): generate sequences of maximum length | |
ax + b, where x is the source length | |
min_len (int, optional): the minimum length of the generated output | |
(not including end-of-sentence) | |
len_penalty (float, optional): length penalty, where <1.0 favors | |
shorter, >1.0 favors longer sentences (default: 1.0) | |
unk_penalty (float, optional): unknown word penalty, where <0 | |
produces more unks, >0 produces fewer (default: 0.0) | |
retain_dropout (bool, optional): use dropout when generating | |
(default: False) | |
temperature (float, optional): temperature, where values | |
>1.0 produce more uniform samples and values <1.0 produce | |
sharper samples (default: 1.0) | |
match_source_len (bool, optional): outputs should match the source | |
length (default: False) | |
no_repeat_ngram_size (int, optional): Size of n-grams that we avoid | |
repeating in the generation (default: 0) | |
normalize_scores (bool, optional): normalize scores by the length | |
of the output (default: True) | |
channel_models (List[~fairseq.models.FairseqModel]): ensemble of models | |
translating from the target to the source | |
k2 (int, optional): Top K2 candidates to score per beam at each step (default:10) | |
ch_weight (int, optional): Weight associated with the channel model score | |
assuming that the direct model score has weight 1.0 (default: 1.0) | |
channel_scoring_type (str, optional): String specifying how to score | |
the channel model (default: 'log_norm') | |
top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or | |
`'src_vocab_batched'`, then this parameter specifies the number of | |
most frequent tokens to include in the channel model output vocabulary, | |
in addition to the source tokens in the input batch (default: 0) | |
lm_models (List[~fairseq.models.FairseqModel]): ensemble of models | |
generating text in the target language | |
lm_dict (~fairseq.data.Dictionary): LM Model dictionary | |
lm_weight (int, optional): Weight associated with the LM model score | |
assuming that the direct model score has weight 1.0 (default: 1.0) | |
normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores | |
by the target length? By default, we normalize the combination of | |
LM and channel model scores by the source length | |
""" | |
self.pad = tgt_dict.pad() | |
self.unk = tgt_dict.unk() | |
self.eos = tgt_dict.eos() | |
self.vocab_size = len(tgt_dict) | |
self.beam_size = beam_size | |
# the max beam size is the dictionary size - 1, since we never select pad | |
self.beam_size = min(beam_size, self.vocab_size - 1) | |
self.max_len_a = max_len_a | |
self.max_len_b = max_len_b | |
self.min_len = min_len | |
self.normalize_scores = normalize_scores | |
self.len_penalty = len_penalty | |
self.unk_penalty = unk_penalty | |
self.retain_dropout = retain_dropout | |
self.temperature = temperature | |
self.match_source_len = match_source_len | |
self.no_repeat_ngram_size = no_repeat_ngram_size | |
self.channel_models = channel_models | |
self.src_dict = src_dict | |
self.tgt_dict = tgt_dict | |
self.combine_method = combine_method | |
self.k2 = k2 | |
self.ch_weight = ch_weight | |
self.channel_scoring_type = channel_scoring_type | |
self.top_k_vocab = top_k_vocab | |
self.lm_models = lm_models | |
self.lm_dict = lm_dict | |
self.lm_weight = lm_weight | |
self.log_softmax_fn = torch.nn.LogSoftmax(dim=1) | |
self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len | |
self.share_tgt_dict = (self.lm_dict == self.tgt_dict) | |
self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict) | |
self.ch_scoring_bsz = 3072 | |
assert temperature > 0, '--temperature must be greater than 0' | |
self.search = NoisyChannelBeamSearch(tgt_dict) | |
def generate( | |
self, | |
models, | |
sample, | |
prefix_tokens=None, | |
bos_token=None, | |
**kwargs | |
): | |
"""Generate a batch of translations. | |
Args: | |
models (List[~fairseq.models.FairseqModel]): ensemble of models | |
sample (dict): batch | |
prefix_tokens (torch.LongTensor, optional): force decoder to begin | |
with these tokens | |
""" | |
model = EnsembleModel(models) | |
incremental_states = torch.jit.annotate( | |
List[Dict[str, Dict[str, Optional[Tensor]]]], | |
[ | |
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) | |
for i in range(model.models_size) | |
], | |
) | |
if not self.retain_dropout: | |
model.eval() | |
# model.forward normally channels prev_output_tokens into the decoder | |
# separately, but SequenceGenerator directly calls model.encoder | |
encoder_input = { | |
k: v for k, v in sample['net_input'].items() | |
if k != 'prev_output_tokens' | |
} | |
src_tokens = encoder_input['src_tokens'] | |
src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) | |
input_size = src_tokens.size() | |
# batch dimension goes first followed by source lengths | |
bsz = input_size[0] | |
src_len = input_size[1] | |
beam_size = self.beam_size | |
if self.match_source_len: | |
max_len = src_lengths_no_eos.max().item() | |
else: | |
max_len = min( | |
int(self.max_len_a * src_len + self.max_len_b), | |
# exclude the EOS marker | |
model.max_decoder_positions() - 1, | |
) | |
# compute the encoder output for each beam | |
encoder_outs = model.forward_encoder(encoder_input) | |
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) | |
new_order = new_order.to(src_tokens.device).long() | |
encoder_outs = model.reorder_encoder_out(encoder_outs, new_order) | |
src_lengths = encoder_input['src_lengths'] | |
# initialize buffers | |
scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0) | |
lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0) | |
scores_buf = scores.clone() | |
tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad) | |
tokens_buf = tokens.clone() | |
tokens[:, 0] = self.eos if bos_token is None else bos_token | |
# reorder source tokens so they may be used as a reference in generating P(S|T) | |
src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index) | |
src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len) | |
src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1) | |
attn, attn_buf = None, None | |
nonpad_idxs = None | |
# The cands_to_ignore indicates candidates that should be ignored. | |
# For example, suppose we're sampling and have already finalized 2/5 | |
# samples. Then the cands_to_ignore would mark 2 positions as being ignored, | |
# so that we only finalize the remaining 3 samples. | |
cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask | |
# list of completed sentences | |
finalized = [[] for i in range(bsz)] | |
finished = [False for i in range(bsz)] | |
num_remaining_sent = bsz | |
# number of candidate hypos per step | |
cand_size = 2 * beam_size # 2 x beam size in case half are EOS | |
# offset arrays for converting between different indexing schemes | |
bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens) | |
cand_offsets = torch.arange(0, cand_size).type_as(tokens) | |
# helper function for allocating buffers on the fly | |
buffers = {} | |
def buffer(name, type_of=tokens): # noqa | |
if name not in buffers: | |
buffers[name] = type_of.new() | |
return buffers[name] | |
def is_finished(sent, step, unfin_idx): | |
""" | |
Check whether we've finished generation for a given sentence, by | |
comparing the worst score among finalized hypotheses to the best | |
possible score among unfinalized hypotheses. | |
""" | |
assert len(finalized[sent]) <= beam_size | |
if len(finalized[sent]) == beam_size: | |
return True | |
return False | |
def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores): | |
""" | |
Finalize the given hypotheses at this step, while keeping the total | |
number of finalized hypotheses per sentence <= beam_size. | |
Note: the input must be in the desired finalization order, so that | |
hypotheses that appear earlier in the input are preferred to those | |
that appear later. | |
Args: | |
step: current time step | |
bbsz_idx: A vector of indices in the range [0, bsz*beam_size), | |
indicating which hypotheses to finalize | |
eos_scores: A vector of the same size as bbsz_idx containing | |
fw scores for each hypothesis | |
combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing | |
combined noisy channel scores for each hypothesis | |
""" | |
assert bbsz_idx.numel() == eos_scores.numel() | |
# clone relevant token and attention tensors | |
tokens_clone = tokens.index_select(0, bbsz_idx) | |
tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS | |
assert not tokens_clone.eq(self.eos).any() | |
tokens_clone[:, step] = self.eos | |
attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None | |
# compute scores per token position | |
pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1] | |
pos_scores[:, step] = eos_scores | |
# convert from cumulative to per-position scores | |
pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] | |
# normalize sentence-level scores | |
if self.normalize_scores: | |
combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty | |
cum_unfin = [] | |
prev = 0 | |
for f in finished: | |
if f: | |
prev += 1 | |
else: | |
cum_unfin.append(prev) | |
sents_seen = set() | |
for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())): | |
unfin_idx = idx // beam_size | |
sent = unfin_idx + cum_unfin[unfin_idx] | |
sents_seen.add((sent, unfin_idx)) | |
if self.match_source_len and step > src_lengths_no_eos[unfin_idx]: | |
score = -math.inf | |
def get_hypo(): | |
if attn_clone is not None: | |
# remove padding tokens from attn scores | |
hypo_attn = attn_clone[i][nonpad_idxs[sent]] | |
_, alignment = hypo_attn.max(dim=0) | |
else: | |
hypo_attn = None | |
alignment = None | |
return { | |
'tokens': tokens_clone[i], | |
'score': score, | |
'attention': hypo_attn, # src_len x tgt_len | |
'alignment': alignment, | |
'positional_scores': pos_scores[i], | |
} | |
if len(finalized[sent]) < beam_size: | |
finalized[sent].append(get_hypo()) | |
newly_finished = [] | |
for sent, unfin_idx in sents_seen: | |
# check termination conditions for this sentence | |
if not finished[sent] and is_finished(sent, step, unfin_idx): | |
finished[sent] = True | |
newly_finished.append(unfin_idx) | |
return newly_finished | |
def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k): | |
"""Rescore the top k hypothesis from each beam using noisy channel modeling | |
Returns: | |
new_fw_lprobs: the direct model probabilities after pruning the top k | |
new_ch_lm_lprobs: the combined channel and language model probabilities | |
new_lm_lprobs: the language model probabilities after pruning the top k | |
""" | |
with torch.no_grad(): | |
lprobs_size = lprobs.size() | |
if prefix_tokens is not None and step < prefix_tokens.size(1): | |
probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :] | |
cand_scores = torch.gather( | |
probs_slice, dim=1, | |
index=prefix_tokens[:, step].view(-1, 1).data | |
).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1) | |
cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1) | |
# need to calculate and save fw and lm probs for prefix tokens | |
fw_top_k = cand_scores | |
fw_top_k_idx = cand_indices | |
k = 1 | |
else: | |
# take the top k best words for every sentence in batch*beam | |
fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k) | |
eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0] | |
ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0) | |
src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype) | |
if self.combine_method != "lm_only": | |
temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1) | |
not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index | |
cur_tgt_size = step+2 | |
# add eos to all candidate sentences except those that already end in eos | |
eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1) | |
eos_tokens[eos_idx] = self.tgt_dict.pad_index | |
if step == 0: | |
channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1) | |
else: | |
# move eos from beginning to end of target sentence | |
channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1) | |
ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size)) | |
ch_input_lengths[eos_idx] = cur_tgt_size-1 | |
if self.channel_scoring_type == "unnormalized": | |
ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths) | |
ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True) | |
del ch_encoder_output | |
ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:]) | |
ch_intermed_scores = ch_intermed_scores.float() | |
ch_intermed_scores *= not_padding.float() | |
ch_scores = torch.sum(ch_intermed_scores, dim=1) | |
elif self.channel_scoring_type == "k2_separate": | |
for k_idx in range(k): | |
k_eos_tokens = eos_tokens[k_idx::k, :] | |
if step == 0: | |
k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1) | |
else: | |
# move eos from beginning to end of target sentence | |
k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1) | |
k_ch_input_lengths = ch_input_lengths[k_idx::k] | |
k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens) | |
k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True) | |
k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2) | |
k_ch_intermed_scores *= not_padding.float() | |
ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1) | |
elif self.channel_scoring_type == "src_vocab": | |
ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths) | |
ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True) | |
del ch_encoder_output | |
ch_lprobs = normalized_scores_with_batch_vocab( | |
channel_model.decoder, | |
ch_decoder_output, src_tokens, k, bsz, beam_size, | |
self.src_dict.pad_index, top_k=self.top_k_vocab) | |
ch_scores = torch.sum(ch_lprobs, dim=1) | |
elif self.channel_scoring_type == "src_vocab_batched": | |
ch_bsz_size = temp_src_tokens_full.shape[0] | |
ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz)) | |
for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)): | |
end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size) | |
temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :] | |
channel_input_batch = channel_input[start_idx:end_idx, :] | |
ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx] | |
ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch) | |
ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True) | |
ch_lprobs_list[i] = normalized_scores_with_batch_vocab( | |
channel_model.decoder, | |
ch_decoder_output_batch, src_tokens, k, bsz, beam_size, | |
self.src_dict.pad_index, top_k=self.top_k_vocab, | |
start_idx=start_idx, end_idx=end_idx) | |
ch_lprobs = torch.cat(ch_lprobs_list, dim=0) | |
ch_scores = torch.sum(ch_lprobs, dim=1) | |
else: | |
ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full) | |
ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True) | |
ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1) | |
ch_intermed_scores *= not_padding.float() | |
ch_scores = torch.sum(ch_intermed_scores, dim=1) | |
else: | |
cur_tgt_size = 0 | |
ch_scores = ch_scores.view(bsz*beam_size, k) | |
expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten() | |
if self.share_tgt_dict: | |
lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k) | |
else: | |
new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm) | |
new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm) | |
lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k) | |
lm_scores.add_(expanded_lm_prefix_scores) | |
ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size) | |
# initialize all as min value | |
new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) | |
new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) | |
new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) | |
new_fw_lprobs[:, self.pad] = -math.inf | |
new_ch_lm_lprobs[:, self.pad] = -math.inf | |
new_lm_lprobs[:, self.pad] = -math.inf | |
new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k) | |
new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores) | |
new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k)) | |
return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs | |
def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size): | |
if self.channel_scoring_type == "unnormalized": | |
ch_scores = self.log_softmax_fn( | |
ch_scores.view(-1, self.beam_size * self.k2) | |
).view(ch_scores.shape) | |
ch_scores = ch_scores * self.ch_weight | |
lm_scores1 = lm_scores1 * self.lm_weight | |
if combine_type == "lm_only": | |
# log P(T|S) + log P(T) | |
ch_scores = lm_scores1.view(ch_scores.size()) | |
elif combine_type == "noisy_channel": | |
# 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T) | |
if self.normalize_lm_scores_by_tgt_len: | |
ch_scores.div_(src_size) | |
lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size) | |
ch_scores.add_(lm_scores_norm) | |
# 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T) | |
else: | |
ch_scores.add_(lm_scores1.view(ch_scores.size())) | |
ch_scores.div_(src_size) | |
return ch_scores | |
if self.channel_models is not None: | |
channel_model = self.channel_models[0] # assume only one channel_model model | |
else: | |
channel_model = None | |
lm = EnsembleModel(self.lm_models) | |
lm_incremental_states = torch.jit.annotate( | |
List[Dict[str, Dict[str, Optional[Tensor]]]], | |
[ | |
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) | |
for i in range(lm.models_size) | |
], | |
) | |
reorder_state = None | |
batch_idxs = None | |
for step in range(max_len + 1): # one extra step for EOS marker | |
# reorder decoder internal states based on the prev choice of beams | |
if reorder_state is not None: | |
if batch_idxs is not None: | |
# update beam indices to take into account removed sentences | |
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs) | |
reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size) | |
model.reorder_incremental_state(incremental_states, reorder_state) | |
encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state) | |
lm.reorder_incremental_state(lm_incremental_states, reorder_state) | |
fw_lprobs, avg_attn_scores = model.forward_decoder( | |
tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature, | |
) | |
fw_lprobs[:, self.pad] = -math.inf # never select pad | |
fw_lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty | |
fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2) | |
# handle min and max length constraints | |
if step >= max_len: | |
fw_lprobs[:, :self.eos] = -math.inf | |
fw_lprobs[:, self.eos + 1:] = -math.inf | |
elif step < self.min_len: | |
fw_lprobs[:, self.eos] = -math.inf | |
# handle prefix tokens (possibly with different lengths) | |
if prefix_tokens is not None and step < prefix_tokens.size(1): | |
prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) | |
prefix_mask = prefix_toks.ne(self.pad) | |
prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) | |
fw_lprobs[prefix_mask] = -math.inf | |
fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_( | |
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs | |
) | |
prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) | |
ch_lm_lprobs[prefix_mask] = -math.inf | |
ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_( | |
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs | |
) | |
prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) | |
lm_lprobs[prefix_mask] = -math.inf | |
lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_( | |
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs | |
) | |
# if prefix includes eos, then we should make sure tokens and | |
# scores are the same across all beams | |
eos_mask = prefix_toks.eq(self.eos) | |
if eos_mask.any(): | |
# validate that the first beam matches the prefix | |
first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1] | |
eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] | |
target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] | |
assert (first_beam == target_prefix).all() | |
def replicate_first_beam(tensor, mask): | |
tensor = tensor.view(-1, beam_size, tensor.size(-1)) | |
tensor[mask] = tensor[mask][:, :1, :] | |
return tensor.view(-1, tensor.size(-1)) | |
# copy tokens, scores and lprobs from the first beam to all beams | |
tokens = replicate_first_beam(tokens, eos_mask_batch_dim) | |
scores = replicate_first_beam(scores, eos_mask_batch_dim) | |
fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim) | |
ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim) | |
lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim) | |
if self.no_repeat_ngram_size > 0: | |
# for each beam and batch sentence, generate a list of previous ngrams | |
gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)] | |
for bbsz_idx in range(bsz * beam_size): | |
gen_tokens = tokens[bbsz_idx].tolist() | |
for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]): | |
gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \ | |
gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]] | |
# Record attention scores | |
if avg_attn_scores is not None: | |
if attn is None: | |
attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2) | |
attn_buf = attn.clone() | |
nonpad_idxs = src_tokens.ne(self.pad) | |
attn[:, :, step + 1].copy_(avg_attn_scores) | |
scores = scores.type_as(fw_lprobs) | |
scores_buf = scores_buf.type_as(fw_lprobs) | |
self.search.set_src_lengths(src_lengths_no_eos) | |
if self.no_repeat_ngram_size > 0: | |
def calculate_banned_tokens(bbsz_idx): | |
# before decoding the next token, prevent decoding of ngrams that have already appeared | |
ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist()) | |
return gen_ngrams[bbsz_idx].get(ngram_index, []) | |
if step + 2 - self.no_repeat_ngram_size >= 0: | |
# no banned tokens if we haven't generated no_repeat_ngram_size tokens yet | |
banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)] | |
else: | |
banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)] | |
for bbsz_idx in range(bsz * beam_size): | |
fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf | |
combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step( | |
step, | |
fw_lprobs.view(bsz, -1, self.vocab_size), | |
scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size), | |
lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method | |
) | |
# cand_bbsz_idx contains beam indices for the top candidate | |
# hypotheses, with a range of values: [0, bsz*beam_size), | |
# and dimensions: [bsz, cand_size] | |
cand_bbsz_idx = cand_beams.add(bbsz_offsets) | |
# finalize hypotheses that end in eos (except for candidates to be ignored) | |
eos_mask = cand_indices.eq(self.eos) | |
eos_mask[:, :beam_size] &= ~cands_to_ignore | |
# only consider eos when it's among the top beam_size indices | |
eos_bbsz_idx = torch.masked_select( | |
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] | |
) | |
finalized_sents = set() | |
if eos_bbsz_idx.numel() > 0: | |
eos_scores = torch.masked_select( | |
fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size] | |
) | |
combined_noisy_channel_eos_scores = torch.masked_select( | |
combined_noisy_channel_scores[:, :beam_size], | |
mask=eos_mask[:, :beam_size], | |
) | |
# finalize hypo using channel model score | |
finalized_sents = finalize_hypos( | |
step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores) | |
num_remaining_sent -= len(finalized_sents) | |
assert num_remaining_sent >= 0 | |
if num_remaining_sent == 0: | |
break | |
if len(finalized_sents) > 0: | |
new_bsz = bsz - len(finalized_sents) | |
# construct batch_idxs which holds indices of batches to keep for the next pass | |
batch_mask = cand_indices.new_ones(bsz) | |
batch_mask[cand_indices.new(finalized_sents)] = 0 | |
batch_idxs = torch.nonzero(batch_mask).squeeze(-1) | |
eos_mask = eos_mask[batch_idxs] | |
cand_beams = cand_beams[batch_idxs] | |
bbsz_offsets.resize_(new_bsz, 1) | |
cand_bbsz_idx = cand_beams.add(bbsz_offsets) | |
lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs] | |
fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs] | |
cand_indices = cand_indices[batch_idxs] | |
if prefix_tokens is not None: | |
prefix_tokens = prefix_tokens[batch_idxs] | |
src_lengths_no_eos = src_lengths_no_eos[batch_idxs] | |
cands_to_ignore = cands_to_ignore[batch_idxs] | |
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) | |
scores_buf.resize_as_(scores) | |
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) | |
tokens_buf.resize_as_(tokens) | |
src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) | |
src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) | |
lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze() | |
if attn is not None: | |
attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1) | |
attn_buf.resize_as_(attn) | |
bsz = new_bsz | |
else: | |
batch_idxs = None | |
# Set active_mask so that values > cand_size indicate eos or | |
# ignored hypos and values < cand_size indicate candidate | |
# active hypos. After this, the min values per row are the top | |
# candidate active hypos. | |
eos_mask[:, :beam_size] |= cands_to_ignore | |
active_mask = torch.add( | |
eos_mask.type_as(cand_offsets) * cand_size, | |
cand_offsets[: eos_mask.size(1)], | |
) | |
# get the top beam_size active hypotheses, which are just the hypos | |
# with the smallest values in active_mask | |
active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore') | |
torch.topk( | |
active_mask, k=beam_size, dim=1, largest=False, | |
out=(new_cands_to_ignore, active_hypos) | |
) | |
# update cands_to_ignore to ignore any finalized hypos | |
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] | |
assert (~cands_to_ignore).any(dim=1).all() | |
active_bbsz_idx = buffer('active_bbsz_idx') | |
torch.gather( | |
cand_bbsz_idx, dim=1, index=active_hypos, | |
out=active_bbsz_idx, | |
) | |
active_scores = torch.gather( | |
fw_lprobs_top_k, dim=1, index=active_hypos, | |
out=scores[:, step].view(bsz, beam_size), | |
) | |
active_bbsz_idx = active_bbsz_idx.view(-1) | |
active_scores = active_scores.view(-1) | |
# copy tokens and scores for active hypotheses | |
torch.index_select( | |
tokens[:, :step + 1], dim=0, index=active_bbsz_idx, | |
out=tokens_buf[:, :step + 1], | |
) | |
torch.gather( | |
cand_indices, dim=1, index=active_hypos, | |
out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1], | |
) | |
if step > 0: | |
torch.index_select( | |
scores[:, :step], dim=0, index=active_bbsz_idx, | |
out=scores_buf[:, :step], | |
) | |
torch.gather( | |
fw_lprobs_top_k, dim=1, index=active_hypos, | |
out=scores_buf.view(bsz, beam_size, -1)[:, :, step], | |
) | |
torch.gather( | |
lm_lprobs_top_k, dim=1, index=active_hypos, | |
out=lm_prefix_scores.view(bsz, beam_size) | |
) | |
# copy attention for active hypotheses | |
if attn is not None: | |
torch.index_select( | |
attn[:, :, :step + 2], dim=0, index=active_bbsz_idx, | |
out=attn_buf[:, :, :step + 2], | |
) | |
# swap buffers | |
tokens, tokens_buf = tokens_buf, tokens | |
scores, scores_buf = scores_buf, scores | |
if attn is not None: | |
attn, attn_buf = attn_buf, attn | |
# reorder incremental state in decoder | |
reorder_state = active_bbsz_idx | |
# sort by score descending | |
for sent in range(len(finalized)): | |
finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True) | |
return finalized | |
def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k): | |
with torch.no_grad(): | |
lm_lprobs, avg_attn_scores = model.forward_decoder( | |
input_tokens, encoder_outs=None, incremental_states=incremental_states, | |
) | |
lm_lprobs_size = lm_lprobs.size(0) | |
probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1) | |
return probs_next_wrd | |
def make_dict2dict(old_dict, new_dict): | |
dict2dict_map = {} | |
for sym in old_dict.symbols: | |
dict2dict_map[old_dict.index(sym)] = new_dict.index(sym) | |
return dict2dict_map | |
def dict2dict(tokens, dict2dict_map): | |
if tokens.device == torch.device('cpu'): | |
tokens_tmp = tokens | |
else: | |
tokens_tmp = tokens.cpu() | |
return tokens_tmp.map_( | |
tokens_tmp, | |
lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)] | |
).to(tokens.device) | |
def reorder_tokens(tokens, lengths, eos): | |
# reorder source tokens so they may be used as reference for P(S|T) | |
return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0) | |
def reorder_all_tokens(tokens, lengths, eos): | |
# used to reorder src tokens from [<pad> <w1> <w2> .. <eos>] to [<eos> <w1> <w2>...<pad>] | |
# so source tokens can be used to predict P(S|T) | |
return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)]) | |
def normalized_scores_with_batch_vocab( | |
model_decoder, features, target_ids, k, bsz, beam_size, | |
pad_idx, top_k=0, vocab_size_meter=None, start_idx=None, | |
end_idx=None, **kwargs): | |
""" | |
Get normalized probabilities (or log probs) from a net's output | |
w.r.t. vocab consisting of target IDs in the batch | |
""" | |
if model_decoder.adaptive_softmax is None: | |
weight = model_decoder.output_projection.weight | |
vocab_ids = torch.unique( | |
torch.cat( | |
(torch.unique(target_ids), torch.arange(top_k, device=target_ids.device)) | |
) | |
) | |
id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids)))) | |
mapped_target_ids = target_ids.cpu().apply_( | |
lambda x, id_map=id_map: id_map[x] | |
).to(target_ids.device) | |
expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1) | |
if start_idx is not None and end_idx is not None: | |
expanded_target_ids = expanded_target_ids[start_idx:end_idx, :] | |
logits = F.linear(features, weight[vocab_ids, :]) | |
log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32) | |
intermed_scores = torch.gather( | |
log_softmax[:, :-1, :], | |
2, | |
expanded_target_ids[:, 1:].unsqueeze(2), | |
).squeeze() | |
not_padding = expanded_target_ids[:, 1:] != pad_idx | |
intermed_scores *= not_padding.float() | |
return intermed_scores | |
else: | |
raise ValueError("adaptive softmax doesn't work with " + | |
"`normalized_scores_with_batch_vocab()`") | |