Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
# Load tokenizer and model | |
tokenizer = GemmaTokenizerFast.from_pretrained("buddhist-nlp/gemma2-mitra-bo-instruct") | |
model = AutoModelForCausalLM.from_pretrained("buddhist-nlp/gemma2-mitra-bo-instruct", torch_dtype=torch.float16).to('cuda:0') | |
# Define custom stopping criteria | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
# Define stop tokens (adjust based on your model's tokenizer) | |
stop_ids = [29, 0] # These should be the token IDs for end of response or similar tokens | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
# Define prediction function for the chat interface | |
def predict(message, history): | |
# Prepare the conversation in the required format | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
# Concatenate previous messages and the user's input | |
messages = "".join([f"\n### user : {item[0]} \n### bot : {item[1]}" for item in history_transformer_format]) | |
# Tokenize the input | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
# Set up the streamer for partial message output | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
# Generate settings | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
) | |
# Run generation in a separate thread | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Stream partial messages as they are generated | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': # Skip specific tokens if necessary | |
partial_message += new_token | |
yield partial_message | |
# Create the chat interface using Gradio | |
gr.ChatInterface(fn=predict, title="Gemma LLM Chatbot", description="Chat with the Gemma model using real-time generation and streaming.").launch(share=True) | |