|
|
|
|
|
import os |
|
import random |
|
import uuid |
|
import json |
|
import re |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from typing import Tuple |
|
|
|
|
|
bad_words = json.loads(os.getenv('BAD_WORDS', '["violence", "blood", "scary", "death", "ghost"]')) |
|
default_negative = os.getenv("default_negative","") |
|
|
|
def check_text(prompt, negative=""): |
|
for i in bad_words: |
|
if i in prompt: |
|
return True |
|
return False |
|
|
|
|
|
style_list = [ |
|
{ |
|
"name": "Cartoon", |
|
"prompt": "colorful cartoon {prompt}. vibrant, playful, friendly, suitable for children, highly detailed, bright colors", |
|
"negative_prompt": "scary, dark, violent, ugly, realistic", |
|
}, |
|
{ |
|
"name": "Children's Illustration", |
|
"prompt": "children's illustration {prompt}. cute, colorful, fun, simple shapes, smooth lines, highly detailed, joyful", |
|
"negative_prompt": "scary, dark, violent, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Sticker", |
|
"prompt": "children's sticker of {prompt}. bright colors, playful, high resolution, cartoonish", |
|
"negative_prompt": "scary, dark, violent, ugly, low resolution", |
|
}, |
|
{ |
|
"name": "Fantasy", |
|
"prompt": "fantasy world for children with {prompt}. magical, vibrant, friendly, beautiful, colorful", |
|
"negative_prompt": "dark, scary, violent, ugly, realistic", |
|
}, |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "Sticker" |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
DESCRIPTION = """## Children's Sticker Generator |
|
|
|
Generate fun and playful stickers for children using AI. |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"SG161222/RealVisXL_V3.0_Turbo", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16" |
|
).to(device) |
|
|
|
|
|
def mm_to_pixels(mm, dpi=300): |
|
"""Convert mm to pixels and make the dimensions divisible by 8.""" |
|
pixels = int((mm / 25.4) * dpi) |
|
return pixels - (pixels % 8) |
|
|
|
|
|
size_map = { |
|
"75mm": (mm_to_pixels(75), mm_to_pixels(75)), |
|
"35mm": (mm_to_pixels(35), mm_to_pixels(35)), |
|
} |
|
|
|
|
|
def save_image(img, background="transparent"): |
|
img = img.convert("RGBA") |
|
data = img.getdata() |
|
new_data = [] |
|
|
|
if background == "transparent": |
|
for item in data: |
|
|
|
if item[0] == 255 and item[1] == 255 and item[2] == 255: |
|
new_data.append((255, 255, 255, 0)) |
|
else: |
|
new_data.append(item) |
|
elif background == "white": |
|
for item in data: |
|
new_data.append(item) |
|
|
|
img.putdata(new_data) |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
style: str = DEFAULT_STYLE_NAME, |
|
seed: int = 0, |
|
size: str = "75mm", |
|
guidance_scale: float = 3, |
|
randomize_seed: bool = False, |
|
background: str = "transparent", |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if check_text(prompt, negative_prompt): |
|
raise ValueError("Prompt contains restricted words.") |
|
|
|
|
|
prompt = " ".join(re.findall(r'\w+', prompt)[:3]) |
|
|
|
|
|
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
width, height = size_map.get(size, (1024, 1024)) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = "" |
|
|
|
options = { |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"width": width, |
|
"height": height, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": 25, |
|
"generator": generator, |
|
"num_images_per_prompt": 6, |
|
"output_type": "pil", |
|
} |
|
|
|
|
|
images = pipe(**options).images |
|
image_paths = [save_image(img, background) for img in images] |
|
|
|
return image_paths, seed |
|
|
|
examples = [ |
|
"cute bunny", |
|
"happy cat", |
|
"funny dog", |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 700px !important} |
|
h1{text-align:center} |
|
''' |
|
|
|
|
|
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Enter your prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter 2-3 word prompt (e.g., cute bunny)", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run") |
|
result = gr.Gallery(label="Generated Stickers", columns=2, preview=True) |
|
with gr.Accordion("Advanced options", open=False): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
value="(scary, violent, dark, ugly)", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
visible=True |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
size_selection = gr.Radio( |
|
choices=["75mm", "35mm"], |
|
value="75mm", |
|
label="Sticker Size", |
|
) |
|
style_selection = gr.Radio( |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Image Style", |
|
) |
|
background_selection = gr.Radio( |
|
choices=["transparent", "white"], |
|
value="transparent", |
|
label="Background Color", |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=20.0, |
|
step=0.1, |
|
value=6, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
style_selection, |
|
seed, |
|
size_selection, |
|
guidance_scale, |
|
randomize_seed, |
|
background_selection, |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |