ginigen-gallery / app-backup1.py
openfree's picture
Update app-backup1.py
3552d05 verified
raw
history blame
45.9 kB
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import requests
import pandas as pd
from transformers import pipeline
from gradio_imageslider import ImageSlider
import numpy as np
import warnings
# 상단에 허깅페이스 USERNAME (해당 계정) 반드시 개별 지정할것
USERNAME = "openfree"
huggingface_token = os.getenv("HF_TOKEN")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# 공통 FLUX 모델 로드
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
# LoRA를 위한 설정
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
# Image-to-Image 파이프라인 설정
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
).to(device)
MAX_SEED = 2**32 - 1
MAX_PIXEL_BUDGET = 1024 * 1024
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def download_file(url, directory=None):
if directory is None:
directory = os.getcwd() # Use current working directory if not specified
# Get the filename from the URL
filename = url.split('/')[-1]
# Full path for the downloaded file
filepath = os.path.join(directory, filename)
# Download the file
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Write the content to the file
with open(filepath, 'wb') as file:
file.write(response.content)
return filepath
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
selected_index = evt.index
selected_indices = selected_indices or []
if selected_index in selected_indices:
selected_indices.remove(selected_index)
else:
if len(selected_indices) < 3:
selected_indices.append(selected_index)
else:
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
selected_info_1 = "Select LoRA 1"
selected_info_2 = "Select LoRA 2"
selected_info_3 = "Select LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co./{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if selected_indices:
last_selected_lora = loras_state[selected_indices[-1]]
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
else:
new_placeholder = "Type a prompt after selecting a LoRA"
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
def remove_lora(selected_indices, loras_state, index_to_remove):
if len(selected_indices) > index_to_remove:
selected_indices.pop(index_to_remove)
selected_info_1 = "Select LoRA 1"
selected_info_2 = "Select LoRA 2"
selected_info_3 = "Select LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
for i, idx in enumerate(selected_indices):
lora = loras_state[idx]
if i == 0:
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨"
lora_image_1 = lora['image']
elif i == 1:
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨"
lora_image_2 = lora['image']
elif i == 2:
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨"
lora_image_3 = lora['image']
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
def remove_lora_1(selected_indices, loras_state):
return remove_lora(selected_indices, loras_state, 0)
def remove_lora_2(selected_indices, loras_state):
return remove_lora(selected_indices, loras_state, 1)
def remove_lora_3(selected_indices, loras_state):
return remove_lora(selected_indices, loras_state, 2)
def randomize_loras(selected_indices, loras_state):
try:
if len(loras_state) < 3:
raise gr.Error("Not enough LoRAs to randomize.")
selected_indices = random.sample(range(len(loras_state)), 3)
lora1 = loras_state[selected_indices[0]]
lora2 = loras_state[selected_indices[1]]
lora3 = loras_state[selected_indices[2]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨"
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨"
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co./{lora3['repo']}) ✨"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = lora1.get('image', 'path/to/default/image.png')
lora_image_2 = lora2.get('image', 'path/to/default/image.png')
lora_image_3 = lora3.get('image', 'path/to/default/image.png')
random_prompt = random.choice(prompt_values)
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
except Exception as e:
print(f"Error in randomize_loras: {str(e)}")
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
def add_custom_lora(custom_lora, selected_indices, current_loras):
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
if existing_item_index is None:
if repo.endswith(".safetensors") and repo.startswith("http"):
repo = download_file(repo)
new_item = {
"image": image if image else "/home/user/app/custom.png",
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(f"New LoRA: {new_item}")
existing_item_index = len(current_loras)
current_loras.append(new_item)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_indices if there's room
if len(selected_indices) < 3:
selected_indices.append(existing_item_index)
else:
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
if len(selected_indices) >= 1:
lora1 = current_loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
lora_image_1 = lora1['image'] if lora1['image'] else None
if len(selected_indices) >= 2:
lora2 = current_loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
lora_image_2 = lora2['image'] if lora2['image'] else None
if len(selected_indices) >= 3:
lora3 = current_loras[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨"
lora_image_3 = lora3['image'] if lora3['image'] else None
print("Finished adding custom LoRA")
return (
current_loras,
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_info_3,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_scale_3,
lora_image_1,
lora_image_2,
lora_image_3
)
except Exception as e:
print(e)
gr.Warning(str(e))
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
else:
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
def remove_custom_lora(selected_indices, current_loras):
if current_loras:
custom_lora_repo = current_loras[-1]['repo']
# Remove from loras list
current_loras = current_loras[:-1]
# Remove from selected_indices if selected
custom_lora_index = len(current_loras)
if custom_lora_index in selected_indices:
selected_indices.remove(custom_lora_index)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
if len(selected_indices) >= 1:
lora1 = current_loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = current_loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = current_loras[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
lora_image_3 = lora3['image']
return (
current_loras,
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_info_3,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_scale_3,
lora_image_1,
lora_image_2,
lora_image_3
)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
print("Generating image...")
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
good_vae=good_vae,
):
yield img
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
pipe_i2i.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
image_input = load_image(image_input_path)
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
).images[0]
return final_image
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices,
lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed,
width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
try:
# 한글 감지 및 번역
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
print(f"Original prompt: {prompt}")
print(f"Translated prompt: {translated}")
prompt = translated
if not selected_indices:
raise gr.Error("You must select at least one LoRA before proceeding.")
selected_loras = [loras_state[idx] for idx in selected_indices]
# Build the prompt with trigger words
prepends = []
appends = []
for lora in selected_loras:
trigger_word = lora.get('trigger_word', '')
if trigger_word:
if lora.get("trigger_position") == "prepend":
prepends.append(trigger_word)
else:
appends.append(trigger_word)
prompt_mash = " ".join(prepends + [prompt] + appends)
print("Prompt Mash: ", prompt_mash)
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
print(f"Active adapters before loading: {pipe.get_active_adapters()}")
# Load LoRA weights with respective scales
lora_names = []
lora_weights = []
with calculateDuration("Loading LoRA weights"):
for idx, lora in enumerate(selected_loras):
try:
lora_name = f"lora_{idx}"
lora_path = lora['repo']
# Private 모델인 경우 특별 처리
if lora.get('private', False):
lora_path = load_private_model(lora_path, huggingface_token)
print(f"Using private model path: {lora_path}")
if image_input is not None:
pipe_i2i.load_lora_weights(
lora_path,
adapter_name=lora_name,
token=huggingface_token
)
else:
pipe.load_lora_weights(
lora_path,
adapter_name=lora_name,
token=huggingface_token
)
lora_names.append(lora_name)
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
print(f"Successfully loaded LoRA {lora_name} from {lora_path}")
except Exception as e:
print(f"Failed to load LoRA {lora_name}: {str(e)}")
continue
print("Loaded LoRAs:", lora_names)
print("Adapter weights:", lora_weights)
if lora_names:
if image_input is not None:
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
else:
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
else:
print("No LoRAs were successfully loaded.")
return None, seed, gr.update(visible=False)
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
# Randomize seed if needed
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image
if image_input is not None:
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
if final_image is None:
raise Exception("Failed to generate image")
return final_image, seed, gr.update(visible=False)
except Exception as e:
print(f"Error in run_lora: {str(e)}")
return None, seed, gr.update(visible=False)
run_lora.zerogpu = True
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co./{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
safetensors_name = None
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co./{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
if not safetensors_name:
raise gr.Error("No *.safetensors file found in the repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
else:
raise gr.Error("Invalid Hugging Face repository link")
def check_custom_model(link):
if link.endswith(".safetensors"):
# Treat as direct link to the LoRA weights
title = os.path.basename(link)
repo = link
path = None # No specific weight name
trigger_word = ""
image_url = None
return title, repo, path, trigger_word, image_url
elif link.startswith("https://"):
if "huggingface.co" in link:
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
raise Exception("Unsupported URL")
else:
# Assume it's a Hugging Face model path
return get_huggingface_safetensors(link)
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
if new_image is not None:
history.insert(0, new_image)
return history
def refresh_models(huggingface_token):
try:
headers = {
"Authorization": f"Bearer {huggingface_token}",
"Accept": "application/json"
}
username = USERNAME
api_url = f"https://huggingface.co./api/models?author={username}"
response = requests.get(api_url, headers=headers)
if response.status_code != 200:
raise Exception(f"Failed to fetch models from HuggingFace. Status code: {response.status_code}")
all_models = response.json()
print(f"Found {len(all_models)} models for user {username}")
user_models = [
model for model in all_models
if model.get('tags') and ('flux' in [tag.lower() for tag in model.get('tags', [])] or
'flux-lora' in [tag.lower() for tag in model.get('tags', [])])
]
print(f"Found {len(user_models)} FLUX models")
new_models = []
for model in user_models:
try:
model_id = model['id']
model_card_url = f"https://huggingface.co./api/models/{model_id}"
model_info_response = requests.get(model_card_url, headers=headers)
model_info = model_info_response.json()
# 이미지 URL에 토큰을 포함시키는 방식으로 변경
is_private = model.get('private', False)
base_image_name = "1732195028106__000001000_0.jpg" # 기본 이미지 이름
try:
# 실제 이미지 파일 확인
fs = HfFileSystem(token=huggingface_token)
samples_path = f"{model_id}/samples"
files = fs.ls(samples_path, detail=True)
jpg_files = [
f['name'] for f in files
if isinstance(f, dict) and
'name' in f and
f['name'].lower().endswith('.jpg') and
any(char.isdigit() for char in os.path.basename(f['name']))
]
if jpg_files:
base_image_name = os.path.basename(jpg_files[0])
except Exception as e:
print(f"Error accessing samples folder for {model_id}: {str(e)}")
# 이미지 URL 구성 (토큰 포함)
if is_private:
# Private 모델의 경우 로컬 캐시 경로 사용
cache_dir = f"models/{model_id.replace('/', '_')}/samples"
os.makedirs(cache_dir, exist_ok=True)
# 이미지 다운로드
image_url = f"https://huggingface.co./{model_id}/resolve/main/samples/{base_image_name}"
local_image_path = os.path.join(cache_dir, base_image_name)
if not os.path.exists(local_image_path):
response = requests.get(image_url, headers=headers)
if response.status_code == 200:
with open(local_image_path, 'wb') as f:
f.write(response.content)
image_url = local_image_path
else:
image_url = f"https://huggingface.co./{model_id}/resolve/main/samples/{base_image_name}"
model_info = {
"image": image_url,
"title": f"[Private] {model_id.split('/')[-1]}" if is_private else model_id.split('/')[-1],
"repo": model_id,
"weights": "pytorch_lora_weights.safetensors",
"trigger_word": model_info.get('instance_prompt', ''),
"private": is_private
}
new_models.append(model_info)
print(f"Added model: {model_id} with image: {image_url}")
except Exception as e:
print(f"Error processing model {model['id']}: {str(e)}")
continue
updated_loras = new_models + [lora for lora in loras if lora['repo'] not in [m['repo'] for m in new_models]]
print(f"Total models after refresh: {len(updated_loras)}")
return updated_loras
except Exception as e:
print(f"Error refreshing models: {str(e)}")
return loras
def load_private_model(model_id, huggingface_token):
"""Private 모델을 로드하는 함수"""
try:
headers = {"Authorization": f"Bearer {huggingface_token}"}
# 모델 다운로드
local_dir = snapshot_download(
repo_id=model_id,
token=huggingface_token,
local_dir=f"models/{model_id.replace('/', '_')}",
local_dir_use_symlinks=False
)
# safetensors 파일 찾기
safetensors_file = None
for root, dirs, files in os.walk(local_dir):
for file in files:
if file.endswith('.safetensors'):
safetensors_file = os.path.join(root, file)
break
if safetensors_file:
break
if not safetensors_file:
raise Exception(f"No .safetensors file found in {local_dir}")
print(f"Found safetensors file: {safetensors_file}")
return safetensors_file # 전체 경로를 반환
except Exception as e:
print(f"Error loading private model {model_id}: {str(e)}")
raise e
custom_theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
).set(
button_primary_background_fill="*primary_500",
button_primary_background_fill_dark="*primary_600",
button_primary_background_fill_hover="*primary_400",
button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_600",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_dark="*neutral_700",
button_secondary_background_fill_hover="*neutral_50",
button_secondary_text_color="*neutral_800",
button_secondary_text_color_dark="white",
background_fill_primary="*neutral_50",
background_fill_primary_dark="*neutral_900",
block_background_fill="white",
block_background_fill_dark="*neutral_800",
block_label_background_fill="*primary_500",
block_label_background_fill_dark="*primary_600",
block_label_text_color="white",
block_label_text_color_dark="white",
block_title_text_color="*neutral_800",
block_title_text_color_dark="white",
input_background_fill="white",
input_background_fill_dark="*neutral_800",
input_border_color="*neutral_200",
input_border_color_dark="*neutral_700",
input_placeholder_color="*neutral_400",
input_placeholder_color_dark="*neutral_400",
shadow_spread="8px",
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.05)"
)
css = '''
/* 기본 버튼 및 컴포넌트 스타일 */
#gen_btn {
height: 100%
}
#title {
text-align: center
}
#title h1 {
font-size: 3em;
display: inline-flex;
align-items: center
}
#title img {
width: 100px;
margin-right: 0.25em
}
#lora_list {
background: var(--block-background-fill);
padding: 0 1em .3em;
font-size: 90%
}
/* 커스텀 LoRA 카드 스타일 */
.custom_lora_card {
margin-bottom: 1em
}
.card_internal {
display: flex;
height: 100px;
margin-top: .5em
}
.card_internal img {
margin-right: 1em
}
/* 유틸리티 클래스 */
.styler {
--form-gap-width: 0px !important
}
/* 프로그레스 바 스타일 */
#progress {
height: 30px;
width: 90% !important;
margin: 0 auto !important;
}
#progress .generating {
display: none
}
.progress-container {
width: 100%;
height: 30px;
background-color: #f0f0f0;
border-radius: 15px;
overflow: hidden;
margin-bottom: 20px
}
.progress-bar {
height: 100%;
background-color: #4f46e5;
width: calc(var(--current) / var(--total) * 100%);
transition: width 0.5s ease-in-out
}
/* 컴포넌트 특정 스타일 */
#component-8, .button_total {
height: 100%;
align-self: stretch;
}
#loaded_loras [data-testid="block-info"] {
font-size: 80%
}
#custom_lora_structure {
background: var(--block-background-fill)
}
#custom_lora_btn {
margin-top: auto;
margin-bottom: 11px
}
#random_btn {
font-size: 300%
}
#component-11 {
align-self: stretch;
}
/* 갤러리 메인 스타일 */
#lora_gallery {
margin: 20px 0;
padding: 10px;
border: 1px solid #ddd;
border-radius: 12px;
background: linear-gradient(to bottom right, #ffffff, #f8f9fa);
width: 100% !important;
height: 800px !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
display: block !important;
}
/* 갤러리 그리드 스타일 */
#gallery {
display: grid !important;
grid-template-columns: repeat(10, 1fr) !important;
gap: 10px !important;
padding: 10px !important;
width: 100% !important;
height: 100% !important;
overflow-y: auto !important;
max-width: 100% !important;
}
/* 갤러리 아이템 스타일 */
.gallery-item {
position: relative !important;
width: 100% !important;
aspect-ratio: 1 !important;
margin: 0 !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
border-radius: 12px;
overflow: hidden;
}
.gallery-item img {
width: 100% !important;
height: 100% !important;
object-fit: cover !important;
border-radius: 12px !important;
}
/* 갤러리 그리드 래퍼 */
.wrap, .svelte-w6dy5e {
display: grid !important;
grid-template-columns: repeat(10, 1fr) !important;
gap: 10px !important;
width: 100% !important;
max-width: 100% !important;
}
/* 컨테이너 공통 스타일 */
.container, .content, .block, .contain {
width: 100% !important;
max-width: 100% !important;
margin: 0 !important;
padding: 0 !important;
}
.row {
width: 100% !important;
margin: 0 !important;
padding: 0 !important;
}
/* 버튼 스타일 */
.button_total {
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
transition: all 0.3s ease;
}
.button_total:hover {
transform: translateY(-2px);
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
}
/* 입력 필드 스타일 */
input, textarea {
box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06);
transition: all 0.3s ease;
}
input:focus, textarea:focus {
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}
/* 컴포넌트 border-radius */
.gradio-container .input,
.gradio-container .button,
.gradio-container .block {
border-radius: 12px;
}
/* 스크롤바 스타일 */
#gallery::-webkit-scrollbar {
width: 8px;
}
#gallery::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
#gallery::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
#gallery::-webkit-scrollbar-thumb:hover {
background: #555;
}
/* Flex 컨테이너 */
.flex {
width: 100% !important;
max-width: 100% !important;
display: flex !important;
}
/* Svelte 특정 클래스 */
.svelte-1p9xokt {
width: 100% !important;
max-width: 100% !important;
}
/* Footer 숨김 */
#footer {
visibility: hidden;
}
/* 결과 이미지 및 컨테이너 스타일 */
#result_column, #result_column > div {
display: flex !important;
flex-direction: column !important;
align-items: flex-start !important; /* center에서 flex-start로 변경 */
width: 100% !important;
margin: 0 !important; /* auto에서 0으로 변경 */
}
.generated-image, .generated-image > div {
display: flex !important;
justify-content: flex-start !important; /* center에서 flex-start로 변경 */
align-items: flex-start !important; /* center에서 flex-start로 변경 */
width: 90% !important;
max-width: 768px !important;
margin: 0 !important; /* auto에서 0으로 변경 */
margin-left: 20px !important; /* 왼쪽 여백 추가 */
}
.generated-image img {
margin: 0 !important; /* auto에서 0으로 변경 */
display: block !important;
max-width: 100% !important;
}
/* 히스토리 갤러리도 좌측 정렬로 변경 */
.history-gallery {
display: flex !important;
justify-content: flex-start !important; /* center에서 flex-start로 변경 */
width: 90% !important;
max-width: 90% !important;
margin: 0 !important; /* auto에서 0으로 변경 */
margin-left: 20px !important; /* 왼쪽 여백 추가 */
/* 새로고침 버튼 스타일 */
#refresh-button {
margin: 10px;
padding: 8px 16px;
background-color: #4a5568;
color: white;
border-radius: 8px;
transition: all 0.3s ease;
}
#refresh-button:hover {
background-color: #2d3748;
transform: scale(1.05);
}
#refresh-button:active {
transform: scale(0.95);
}
}
'''
with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
loras_state = gr.State(loras)
selected_indices = gr.State([])
gr.Markdown(
"""
# MixGen3: 멀티 Lora(이미지 학습) 통합 생성 모델
### 사용 안내:
갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행
"""
)
# 새로고침 버튼 추가
with gr.Row():
refresh_button = gr.Button("🔄 모델 새로고침(나만의 맞춤 학습된 Private 모델 불러오기)", variant="secondary")
with gr.Row(elem_id="lora_gallery", equal_height=True):
gallery = gr.Gallery(
value=[(item["image"], item["title"]) for item in loras],
label="LoRA Explorer Gallery",
columns=11,
elem_id="gallery",
height=800,
object_fit="cover",
show_label=True,
allow_preview=False,
show_share_button=False,
container=True,
preview=False
)
with gr.Tab(label="Generate"):
# Prompt and Generate Button
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
# LoRA Selection Area
with gr.Row(elem_id="loaded_loras"):
# Randomize Button
with gr.Column(scale=1, min_width=25):
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
# LoRA 1
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_1 = gr.Markdown("Select a LoRA 1")
with gr.Column(scale=5, min_width=50):
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_1 = gr.Button("Remove", size="sm")
# LoRA 2
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_2 = gr.Markdown("Select a LoRA 2")
with gr.Column(scale=5, min_width=50):
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_2 = gr.Button("Remove", size="sm")
# LoRA 3
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_3 = gr.Markdown("Select a LoRA 3")
with gr.Column(scale=5, min_width=50):
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_3 = gr.Button("Remove", size="sm")
# Result and Progress Area
with gr.Column(elem_id="result_column"):
progress_bar = gr.Markdown(elem_id="progress", visible=False)
with gr.Column(elem_id="result_box"): # Box를 Column으로 변경
result = gr.Image(
label="Generated Image",
interactive=False,
elem_classes=["generated-image"],
container=True,
elem_id="result_image",
width="100%"
)
with gr.Accordion("History", open=False):
history_gallery = gr.Gallery(
label="History",
columns=6,
object_fit="contain",
interactive=False,
elem_classes=["history-gallery"]
)
# Advanced Settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
# Custom LoRA Section
with gr.Column():
with gr.Group():
with gr.Row(elem_id="custom_lora_structure"):
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co./models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
# Event Handlers
gallery.select(
update_selection,
inputs=[selected_indices, loras_state, width, height],
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices,
lora_scale_1, lora_scale_2, lora_scale_3, width, height,
lora_image_1, lora_image_2, lora_image_3]
)
remove_button_1.click(
remove_lora_1,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
lora_scale_1, lora_scale_2, lora_scale_3,
lora_image_1, lora_image_2, lora_image_3]
)
remove_button_2.click(
remove_lora_2,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
lora_scale_1, lora_scale_2, lora_scale_3,
lora_image_1, lora_image_2, lora_image_3]
)
remove_button_3.click(
remove_lora_3,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
lora_scale_1, lora_scale_2, lora_scale_3,
lora_image_1, lora_image_2, lora_image_3]
)
randomize_button.click(
randomize_loras,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
lora_scale_1, lora_scale_2, lora_scale_3,
lora_image_1, lora_image_2, lora_image_3, prompt]
)
add_custom_lora_button.click(
add_custom_lora,
inputs=[custom_lora, selected_indices, loras_state],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3,
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
lora_image_1, lora_image_2, lora_image_3]
)
remove_custom_lora_button.click(
remove_custom_lora,
inputs=[selected_indices, loras_state],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3,
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
lora_image_1, lora_image_2, lora_image_3]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps,
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
randomize_seed, seed, width, height, loras_state],
outputs=[result, seed, progress_bar]
).then(
fn=lambda x, history: update_history(x, history) if x is not None else history,
inputs=[result, history_gallery],
outputs=history_gallery
)
# 새로고침 버튼 이벤트 핸들러
def refresh_gallery():
updated_loras = refresh_models(huggingface_token)
return (
gr.update(value=[(item["image"], item["title"]) for item in updated_loras]),
updated_loras
)
refresh_button.click(
refresh_gallery,
outputs=[gallery, loras_state]
)
if __name__ == "__main__":
app.queue(max_size=20)
app.launch(debug=True)