Spaces:
Paused
Paused
import os | |
import gradio as gr | |
import json | |
import logging | |
import torch | |
from PIL import Image | |
import spaces | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
from diffusers.utils import load_image | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download | |
import copy | |
import random | |
import time | |
import requests | |
import pandas as pd | |
from transformers import pipeline | |
from gradio_imageslider import ImageSlider | |
import numpy as np | |
import warnings | |
# 상단에 허깅페이스 USERNAME (해당 계정) 반드시 개별 지정할것 | |
USERNAME = "openfree" | |
huggingface_token = os.getenv("HF_TOKEN") | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu") | |
#Load prompts for randomization | |
df = pd.read_csv('prompts.csv', header=None) | |
prompt_values = df.values.flatten() | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# Initialize the base model | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# 공통 FLUX 모델 로드 | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) | |
# LoRA를 위한 설정 | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
# Image-to-Image 파이프라인 설정 | |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained( | |
base_model, | |
vae=good_vae, | |
transformer=pipe.transformer, | |
text_encoder=pipe.text_encoder, | |
tokenizer=pipe.tokenizer, | |
text_encoder_2=pipe.text_encoder_2, | |
tokenizer_2=pipe.tokenizer_2, | |
torch_dtype=dtype | |
).to(device) | |
MAX_SEED = 2**32 - 1 | |
MAX_PIXEL_BUDGET = 1024 * 1024 | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def download_file(url, directory=None): | |
if directory is None: | |
directory = os.getcwd() # Use current working directory if not specified | |
# Get the filename from the URL | |
filename = url.split('/')[-1] | |
# Full path for the downloaded file | |
filepath = os.path.join(directory, filename) | |
# Download the file | |
response = requests.get(url) | |
response.raise_for_status() # Raise an exception for bad status codes | |
# Write the content to the file | |
with open(filepath, 'wb') as file: | |
file.write(response.content) | |
return filepath | |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): | |
selected_index = evt.index | |
selected_indices = selected_indices or [] | |
if selected_index in selected_indices: | |
selected_indices.remove(selected_index) | |
else: | |
if len(selected_indices) < 3: | |
selected_indices.append(selected_index) | |
else: | |
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.") | |
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update() | |
selected_info_1 = "Select LoRA 1" | |
selected_info_2 = "Select LoRA 2" | |
selected_info_3 = "Select LoRA 3" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 1.15 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co./{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if selected_indices: | |
last_selected_lora = loras_state[selected_indices[-1]] | |
new_placeholder = f"Type a prompt for {last_selected_lora['title']}" | |
else: | |
new_placeholder = "Type a prompt after selecting a LoRA" | |
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3 | |
def remove_lora(selected_indices, loras_state, index_to_remove): | |
if len(selected_indices) > index_to_remove: | |
selected_indices.pop(index_to_remove) | |
selected_info_1 = "Select LoRA 1" | |
selected_info_2 = "Select LoRA 2" | |
selected_info_3 = "Select LoRA 3" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 1.15 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
for i, idx in enumerate(selected_indices): | |
lora = loras_state[idx] | |
if i == 0: | |
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨" | |
lora_image_1 = lora['image'] | |
elif i == 1: | |
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨" | |
lora_image_2 = lora['image'] | |
elif i == 2: | |
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨" | |
lora_image_3 = lora['image'] | |
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3 | |
def remove_lora_1(selected_indices, loras_state): | |
return remove_lora(selected_indices, loras_state, 0) | |
def remove_lora_2(selected_indices, loras_state): | |
return remove_lora(selected_indices, loras_state, 1) | |
def remove_lora_3(selected_indices, loras_state): | |
return remove_lora(selected_indices, loras_state, 2) | |
def randomize_loras(selected_indices, loras_state): | |
try: | |
if len(loras_state) < 3: | |
raise gr.Error("Not enough LoRAs to randomize.") | |
selected_indices = random.sample(range(len(loras_state)), 3) | |
lora1 = loras_state[selected_indices[0]] | |
lora2 = loras_state[selected_indices[1]] | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨" | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨" | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co./{lora3['repo']}) ✨" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 1.15 | |
lora_image_1 = lora1.get('image', 'path/to/default/image.png') | |
lora_image_2 = lora2.get('image', 'path/to/default/image.png') | |
lora_image_3 = lora3.get('image', 'path/to/default/image.png') | |
random_prompt = random.choice(prompt_values) | |
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt | |
except Exception as e: | |
print(f"Error in randomize_loras: {str(e)}") | |
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', "" | |
def add_custom_lora(custom_lora, selected_indices, current_loras): | |
if custom_lora: | |
try: | |
title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
print(f"Loaded custom LoRA: {repo}") | |
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) | |
if existing_item_index is None: | |
if repo.endswith(".safetensors") and repo.startswith("http"): | |
repo = download_file(repo) | |
new_item = { | |
"image": image if image else "/home/user/app/custom.png", | |
"title": title, | |
"repo": repo, | |
"weights": path, | |
"trigger_word": trigger_word | |
} | |
print(f"New LoRA: {new_item}") | |
existing_item_index = len(current_loras) | |
current_loras.append(new_item) | |
# Update gallery | |
gallery_items = [(item["image"], item["title"]) for item in current_loras] | |
# Update selected_indices if there's room | |
if len(selected_indices) < 3: | |
selected_indices.append(existing_item_index) | |
else: | |
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.") | |
# Update selected_info and images | |
selected_info_1 = "Select a LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 1.15 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
if len(selected_indices) >= 1: | |
lora1 = current_loras[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨" | |
lora_image_1 = lora1['image'] if lora1['image'] else None | |
if len(selected_indices) >= 2: | |
lora2 = current_loras[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨" | |
lora_image_2 = lora2['image'] if lora2['image'] else None | |
if len(selected_indices) >= 3: | |
lora3 = current_loras[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨" | |
lora_image_3 = lora3['image'] if lora3['image'] else None | |
print("Finished adding custom LoRA") | |
return ( | |
current_loras, | |
gr.update(value=gallery_items), | |
selected_info_1, | |
selected_info_2, | |
selected_info_3, | |
selected_indices, | |
lora_scale_1, | |
lora_scale_2, | |
lora_scale_3, | |
lora_image_1, | |
lora_image_2, | |
lora_image_3 | |
) | |
except Exception as e: | |
print(e) | |
gr.Warning(str(e)) | |
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() | |
else: | |
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() | |
def remove_custom_lora(selected_indices, current_loras): | |
if current_loras: | |
custom_lora_repo = current_loras[-1]['repo'] | |
# Remove from loras list | |
current_loras = current_loras[:-1] | |
# Remove from selected_indices if selected | |
custom_lora_index = len(current_loras) | |
if custom_lora_index in selected_indices: | |
selected_indices.remove(custom_lora_index) | |
# Update gallery | |
gallery_items = [(item["image"], item["title"]) for item in current_loras] | |
# Update selected_info and images | |
selected_info_1 = "Select a LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 1.15 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
if len(selected_indices) >= 1: | |
lora1 = current_loras[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = current_loras[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = current_loras[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
return ( | |
current_loras, | |
gr.update(value=gallery_items), | |
selected_info_1, | |
selected_info_2, | |
selected_info_3, | |
selected_indices, | |
lora_scale_1, | |
lora_scale_2, | |
lora_scale_3, | |
lora_image_1, | |
lora_image_2, | |
lora_image_3 | |
) | |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress): | |
print("Generating image...") | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt_mash, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": 1.0}, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
yield img | |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed): | |
pipe_i2i.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image_input = load_image(image_input_path) | |
final_image = pipe_i2i( | |
prompt=prompt_mash, | |
image=image_input, | |
strength=image_strength, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": 1.0}, | |
output_type="pil", | |
).images[0] | |
return final_image | |
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, | |
lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, | |
width, height, loras_state, progress=gr.Progress(track_tqdm=True)): | |
try: | |
# 한글 감지 및 번역 | |
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): | |
translated = translator(prompt, max_length=512)[0]['translation_text'] | |
print(f"Original prompt: {prompt}") | |
print(f"Translated prompt: {translated}") | |
prompt = translated | |
if not selected_indices: | |
raise gr.Error("You must select at least one LoRA before proceeding.") | |
selected_loras = [loras_state[idx] for idx in selected_indices] | |
# Build the prompt with trigger words | |
prepends = [] | |
appends = [] | |
for lora in selected_loras: | |
trigger_word = lora.get('trigger_word', '') | |
if trigger_word: | |
if lora.get("trigger_position") == "prepend": | |
prepends.append(trigger_word) | |
else: | |
appends.append(trigger_word) | |
prompt_mash = " ".join(prepends + [prompt] + appends) | |
print("Prompt Mash: ", prompt_mash) | |
# Unload previous LoRA weights | |
with calculateDuration("Unloading LoRA"): | |
pipe.unload_lora_weights() | |
pipe_i2i.unload_lora_weights() | |
print(f"Active adapters before loading: {pipe.get_active_adapters()}") | |
# Load LoRA weights with respective scales | |
lora_names = [] | |
lora_weights = [] | |
with calculateDuration("Loading LoRA weights"): | |
for idx, lora in enumerate(selected_loras): | |
try: | |
lora_name = f"lora_{idx}" | |
lora_path = lora['repo'] | |
# Private 모델인 경우 특별 처리 | |
if lora.get('private', False): | |
lora_path = load_private_model(lora_path, huggingface_token) | |
print(f"Using private model path: {lora_path}") | |
if image_input is not None: | |
pipe_i2i.load_lora_weights( | |
lora_path, | |
adapter_name=lora_name, | |
token=huggingface_token | |
) | |
else: | |
pipe.load_lora_weights( | |
lora_path, | |
adapter_name=lora_name, | |
token=huggingface_token | |
) | |
lora_names.append(lora_name) | |
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3) | |
print(f"Successfully loaded LoRA {lora_name} from {lora_path}") | |
except Exception as e: | |
print(f"Failed to load LoRA {lora_name}: {str(e)}") | |
continue | |
print("Loaded LoRAs:", lora_names) | |
print("Adapter weights:", lora_weights) | |
if lora_names: | |
if image_input is not None: | |
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights) | |
else: | |
pipe.set_adapters(lora_names, adapter_weights=lora_weights) | |
else: | |
print("No LoRAs were successfully loaded.") | |
return None, seed, gr.update(visible=False) | |
print(f"Active adapters after loading: {pipe.get_active_adapters()}") | |
# Randomize seed if needed | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Generate image | |
if image_input is not None: | |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed) | |
else: | |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) | |
final_image = None | |
step_counter = 0 | |
for image in image_generator: | |
step_counter += 1 | |
final_image = image | |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' | |
yield image, seed, gr.update(value=progress_bar, visible=True) | |
if final_image is None: | |
raise Exception("Failed to generate image") | |
return final_image, seed, gr.update(visible=False) | |
except Exception as e: | |
print(f"Error in run_lora: {str(e)}") | |
return None, seed, gr.update(visible=False) | |
run_lora.zerogpu = True | |
def get_huggingface_safetensors(link): | |
split_link = link.split("/") | |
if len(split_link) == 2: | |
model_card = ModelCard.load(link) | |
base_model = model_card.data.get("base_model") | |
print(f"Base model: {base_model}") | |
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: | |
raise Exception("Not a FLUX LoRA!") | |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
image_url = f"https://huggingface.co./{link}/resolve/main/{image_path}" if image_path else None | |
fs = HfFileSystem() | |
safetensors_name = None | |
try: | |
list_of_files = fs.ls(link, detail=False) | |
for file in list_of_files: | |
if file.endswith(".safetensors"): | |
safetensors_name = file.split("/")[-1] | |
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): | |
image_elements = file.split("/") | |
image_url = f"https://huggingface.co./{link}/resolve/main/{image_elements[-1]}" | |
except Exception as e: | |
print(e) | |
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") | |
if not safetensors_name: | |
raise gr.Error("No *.safetensors file found in the repository") | |
return split_link[1], link, safetensors_name, trigger_word, image_url | |
else: | |
raise gr.Error("Invalid Hugging Face repository link") | |
def check_custom_model(link): | |
if link.endswith(".safetensors"): | |
# Treat as direct link to the LoRA weights | |
title = os.path.basename(link) | |
repo = link | |
path = None # No specific weight name | |
trigger_word = "" | |
image_url = None | |
return title, repo, path, trigger_word, image_url | |
elif link.startswith("https://"): | |
if "huggingface.co" in link: | |
link_split = link.split("huggingface.co/") | |
return get_huggingface_safetensors(link_split[1]) | |
else: | |
raise Exception("Unsupported URL") | |
else: | |
# Assume it's a Hugging Face model path | |
return get_huggingface_safetensors(link) | |
def update_history(new_image, history): | |
"""Updates the history gallery with the new image.""" | |
if history is None: | |
history = [] | |
if new_image is not None: | |
history.insert(0, new_image) | |
return history | |
def refresh_models(huggingface_token): | |
try: | |
headers = { | |
"Authorization": f"Bearer {huggingface_token}", | |
"Accept": "application/json" | |
} | |
username = USERNAME | |
api_url = f"https://huggingface.co./api/models?author={username}" | |
response = requests.get(api_url, headers=headers) | |
if response.status_code != 200: | |
raise Exception(f"Failed to fetch models from HuggingFace. Status code: {response.status_code}") | |
all_models = response.json() | |
print(f"Found {len(all_models)} models for user {username}") | |
user_models = [ | |
model for model in all_models | |
if model.get('tags') and ('flux' in [tag.lower() for tag in model.get('tags', [])] or | |
'flux-lora' in [tag.lower() for tag in model.get('tags', [])]) | |
] | |
print(f"Found {len(user_models)} FLUX models") | |
new_models = [] | |
for model in user_models: | |
try: | |
model_id = model['id'] | |
model_card_url = f"https://huggingface.co./api/models/{model_id}" | |
model_info_response = requests.get(model_card_url, headers=headers) | |
model_info = model_info_response.json() | |
# 이미지 URL에 토큰을 포함시키는 방식으로 변경 | |
is_private = model.get('private', False) | |
base_image_name = "1732195028106__000001000_0.jpg" # 기본 이미지 이름 | |
try: | |
# 실제 이미지 파일 확인 | |
fs = HfFileSystem(token=huggingface_token) | |
samples_path = f"{model_id}/samples" | |
files = fs.ls(samples_path, detail=True) | |
jpg_files = [ | |
f['name'] for f in files | |
if isinstance(f, dict) and | |
'name' in f and | |
f['name'].lower().endswith('.jpg') and | |
any(char.isdigit() for char in os.path.basename(f['name'])) | |
] | |
if jpg_files: | |
base_image_name = os.path.basename(jpg_files[0]) | |
except Exception as e: | |
print(f"Error accessing samples folder for {model_id}: {str(e)}") | |
# 이미지 URL 구성 (토큰 포함) | |
if is_private: | |
# Private 모델의 경우 로컬 캐시 경로 사용 | |
cache_dir = f"models/{model_id.replace('/', '_')}/samples" | |
os.makedirs(cache_dir, exist_ok=True) | |
# 이미지 다운로드 | |
image_url = f"https://huggingface.co./{model_id}/resolve/main/samples/{base_image_name}" | |
local_image_path = os.path.join(cache_dir, base_image_name) | |
if not os.path.exists(local_image_path): | |
response = requests.get(image_url, headers=headers) | |
if response.status_code == 200: | |
with open(local_image_path, 'wb') as f: | |
f.write(response.content) | |
image_url = local_image_path | |
else: | |
image_url = f"https://huggingface.co./{model_id}/resolve/main/samples/{base_image_name}" | |
model_info = { | |
"image": image_url, | |
"title": f"[Private] {model_id.split('/')[-1]}" if is_private else model_id.split('/')[-1], | |
"repo": model_id, | |
"weights": "pytorch_lora_weights.safetensors", | |
"trigger_word": model_info.get('instance_prompt', ''), | |
"private": is_private | |
} | |
new_models.append(model_info) | |
print(f"Added model: {model_id} with image: {image_url}") | |
except Exception as e: | |
print(f"Error processing model {model['id']}: {str(e)}") | |
continue | |
updated_loras = new_models + [lora for lora in loras if lora['repo'] not in [m['repo'] for m in new_models]] | |
print(f"Total models after refresh: {len(updated_loras)}") | |
return updated_loras | |
except Exception as e: | |
print(f"Error refreshing models: {str(e)}") | |
return loras | |
def load_private_model(model_id, huggingface_token): | |
"""Private 모델을 로드하는 함수""" | |
try: | |
headers = {"Authorization": f"Bearer {huggingface_token}"} | |
# 모델 다운로드 | |
local_dir = snapshot_download( | |
repo_id=model_id, | |
token=huggingface_token, | |
local_dir=f"models/{model_id.replace('/', '_')}", | |
local_dir_use_symlinks=False | |
) | |
# safetensors 파일 찾기 | |
safetensors_file = None | |
for root, dirs, files in os.walk(local_dir): | |
for file in files: | |
if file.endswith('.safetensors'): | |
safetensors_file = os.path.join(root, file) | |
break | |
if safetensors_file: | |
break | |
if not safetensors_file: | |
raise Exception(f"No .safetensors file found in {local_dir}") | |
print(f"Found safetensors file: {safetensors_file}") | |
return safetensors_file # 전체 경로를 반환 | |
except Exception as e: | |
print(f"Error loading private model {model_id}: {str(e)}") | |
raise e | |
custom_theme = gr.themes.Base( | |
primary_hue="blue", | |
secondary_hue="purple", | |
neutral_hue="slate", | |
).set( | |
button_primary_background_fill="*primary_500", | |
button_primary_background_fill_dark="*primary_600", | |
button_primary_background_fill_hover="*primary_400", | |
button_primary_border_color="*primary_500", | |
button_primary_border_color_dark="*primary_600", | |
button_primary_text_color="white", | |
button_primary_text_color_dark="white", | |
button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_dark="*neutral_700", | |
button_secondary_background_fill_hover="*neutral_50", | |
button_secondary_text_color="*neutral_800", | |
button_secondary_text_color_dark="white", | |
background_fill_primary="*neutral_50", | |
background_fill_primary_dark="*neutral_900", | |
block_background_fill="white", | |
block_background_fill_dark="*neutral_800", | |
block_label_background_fill="*primary_500", | |
block_label_background_fill_dark="*primary_600", | |
block_label_text_color="white", | |
block_label_text_color_dark="white", | |
block_title_text_color="*neutral_800", | |
block_title_text_color_dark="white", | |
input_background_fill="white", | |
input_background_fill_dark="*neutral_800", | |
input_border_color="*neutral_200", | |
input_border_color_dark="*neutral_700", | |
input_placeholder_color="*neutral_400", | |
input_placeholder_color_dark="*neutral_400", | |
shadow_spread="8px", | |
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.05)" | |
) | |
css = ''' | |
/* 기본 버튼 및 컴포넌트 스타일 */ | |
#gen_btn { | |
height: 100% | |
} | |
#title { | |
text-align: center | |
} | |
#title h1 { | |
font-size: 3em; | |
display: inline-flex; | |
align-items: center | |
} | |
#title img { | |
width: 100px; | |
margin-right: 0.25em | |
} | |
#lora_list { | |
background: var(--block-background-fill); | |
padding: 0 1em .3em; | |
font-size: 90% | |
} | |
/* 커스텀 LoRA 카드 스타일 */ | |
.custom_lora_card { | |
margin-bottom: 1em | |
} | |
.card_internal { | |
display: flex; | |
height: 100px; | |
margin-top: .5em | |
} | |
.card_internal img { | |
margin-right: 1em | |
} | |
/* 유틸리티 클래스 */ | |
.styler { | |
--form-gap-width: 0px !important | |
} | |
/* 프로그레스 바 스타일 */ | |
#progress { | |
height: 30px; | |
width: 90% !important; | |
margin: 0 auto !important; | |
} | |
#progress .generating { | |
display: none | |
} | |
.progress-container { | |
width: 100%; | |
height: 30px; | |
background-color: #f0f0f0; | |
border-radius: 15px; | |
overflow: hidden; | |
margin-bottom: 20px | |
} | |
.progress-bar { | |
height: 100%; | |
background-color: #4f46e5; | |
width: calc(var(--current) / var(--total) * 100%); | |
transition: width 0.5s ease-in-out | |
} | |
/* 컴포넌트 특정 스타일 */ | |
#component-8, .button_total { | |
height: 100%; | |
align-self: stretch; | |
} | |
#loaded_loras [data-testid="block-info"] { | |
font-size: 80% | |
} | |
#custom_lora_structure { | |
background: var(--block-background-fill) | |
} | |
#custom_lora_btn { | |
margin-top: auto; | |
margin-bottom: 11px | |
} | |
#random_btn { | |
font-size: 300% | |
} | |
#component-11 { | |
align-self: stretch; | |
} | |
/* 갤러리 메인 스타일 */ | |
#lora_gallery { | |
margin: 20px 0; | |
padding: 10px; | |
border: 1px solid #ddd; | |
border-radius: 12px; | |
background: linear-gradient(to bottom right, #ffffff, #f8f9fa); | |
width: 100% !important; | |
height: 800px !important; | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
display: block !important; | |
} | |
/* 갤러리 그리드 스타일 */ | |
#gallery { | |
display: grid !important; | |
grid-template-columns: repeat(10, 1fr) !important; | |
gap: 10px !important; | |
padding: 10px !important; | |
width: 100% !important; | |
height: 100% !important; | |
overflow-y: auto !important; | |
max-width: 100% !important; | |
} | |
/* 갤러리 아이템 스타일 */ | |
.gallery-item { | |
position: relative !important; | |
width: 100% !important; | |
aspect-ratio: 1 !important; | |
margin: 0 !important; | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
transition: transform 0.3s ease, box-shadow 0.3s ease; | |
border-radius: 12px; | |
overflow: hidden; | |
} | |
.gallery-item img { | |
width: 100% !important; | |
height: 100% !important; | |
object-fit: cover !important; | |
border-radius: 12px !important; | |
} | |
/* 갤러리 그리드 래퍼 */ | |
.wrap, .svelte-w6dy5e { | |
display: grid !important; | |
grid-template-columns: repeat(10, 1fr) !important; | |
gap: 10px !important; | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* 컨테이너 공통 스타일 */ | |
.container, .content, .block, .contain { | |
width: 100% !important; | |
max-width: 100% !important; | |
margin: 0 !important; | |
padding: 0 !important; | |
} | |
.row { | |
width: 100% !important; | |
margin: 0 !important; | |
padding: 0 !important; | |
} | |
/* 버튼 스타일 */ | |
.button_total { | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); | |
transition: all 0.3s ease; | |
} | |
.button_total:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05); | |
} | |
/* 입력 필드 스타일 */ | |
input, textarea { | |
box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06); | |
transition: all 0.3s ease; | |
} | |
input:focus, textarea:focus { | |
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5); | |
} | |
/* 컴포넌트 border-radius */ | |
.gradio-container .input, | |
.gradio-container .button, | |
.gradio-container .block { | |
border-radius: 12px; | |
} | |
/* 스크롤바 스타일 */ | |
#gallery::-webkit-scrollbar { | |
width: 8px; | |
} | |
#gallery::-webkit-scrollbar-track { | |
background: #f1f1f1; | |
border-radius: 4px; | |
} | |
#gallery::-webkit-scrollbar-thumb { | |
background: #888; | |
border-radius: 4px; | |
} | |
#gallery::-webkit-scrollbar-thumb:hover { | |
background: #555; | |
} | |
/* Flex 컨테이너 */ | |
.flex { | |
width: 100% !important; | |
max-width: 100% !important; | |
display: flex !important; | |
} | |
/* Svelte 특정 클래스 */ | |
.svelte-1p9xokt { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* Footer 숨김 */ | |
#footer { | |
visibility: hidden; | |
} | |
/* 결과 이미지 및 컨테이너 스타일 */ | |
#result_column, #result_column > div { | |
display: flex !important; | |
flex-direction: column !important; | |
align-items: flex-start !important; /* center에서 flex-start로 변경 */ | |
width: 100% !important; | |
margin: 0 !important; /* auto에서 0으로 변경 */ | |
} | |
.generated-image, .generated-image > div { | |
display: flex !important; | |
justify-content: flex-start !important; /* center에서 flex-start로 변경 */ | |
align-items: flex-start !important; /* center에서 flex-start로 변경 */ | |
width: 90% !important; | |
max-width: 768px !important; | |
margin: 0 !important; /* auto에서 0으로 변경 */ | |
margin-left: 20px !important; /* 왼쪽 여백 추가 */ | |
} | |
.generated-image img { | |
margin: 0 !important; /* auto에서 0으로 변경 */ | |
display: block !important; | |
max-width: 100% !important; | |
} | |
/* 히스토리 갤러리도 좌측 정렬로 변경 */ | |
.history-gallery { | |
display: flex !important; | |
justify-content: flex-start !important; /* center에서 flex-start로 변경 */ | |
width: 90% !important; | |
max-width: 90% !important; | |
margin: 0 !important; /* auto에서 0으로 변경 */ | |
margin-left: 20px !important; /* 왼쪽 여백 추가 */ | |
/* 새로고침 버튼 스타일 */ | |
#refresh-button { | |
margin: 10px; | |
padding: 8px 16px; | |
background-color: #4a5568; | |
color: white; | |
border-radius: 8px; | |
transition: all 0.3s ease; | |
} | |
#refresh-button:hover { | |
background-color: #2d3748; | |
transform: scale(1.05); | |
} | |
#refresh-button:active { | |
transform: scale(0.95); | |
} | |
} | |
''' | |
with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app: | |
loras_state = gr.State(loras) | |
selected_indices = gr.State([]) | |
gr.Markdown( | |
""" | |
# MixGen3: 멀티 Lora(이미지 학습) 통합 생성 모델 | |
### 사용 안내: | |
갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행 | |
""" | |
) | |
# 새로고침 버튼 추가 | |
with gr.Row(): | |
refresh_button = gr.Button("🔄 모델 새로고침(나만의 맞춤 학습된 Private 모델 불러오기)", variant="secondary") | |
with gr.Row(elem_id="lora_gallery", equal_height=True): | |
gallery = gr.Gallery( | |
value=[(item["image"], item["title"]) for item in loras], | |
label="LoRA Explorer Gallery", | |
columns=11, | |
elem_id="gallery", | |
height=800, | |
object_fit="cover", | |
show_label=True, | |
allow_preview=False, | |
show_share_button=False, | |
container=True, | |
preview=False | |
) | |
with gr.Tab(label="Generate"): | |
# Prompt and Generate Button | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") | |
with gr.Column(scale=1): | |
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) | |
# LoRA Selection Area | |
with gr.Row(elem_id="loaded_loras"): | |
# Randomize Button | |
with gr.Column(scale=1, min_width=25): | |
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") | |
# LoRA 1 | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_1 = gr.Markdown("Select a LoRA 1") | |
with gr.Column(scale=5, min_width=50): | |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15) | |
with gr.Row(): | |
remove_button_1 = gr.Button("Remove", size="sm") | |
# LoRA 2 | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_2 = gr.Markdown("Select a LoRA 2") | |
with gr.Column(scale=5, min_width=50): | |
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15) | |
with gr.Row(): | |
remove_button_2 = gr.Button("Remove", size="sm") | |
# LoRA 3 | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_3 = gr.Markdown("Select a LoRA 3") | |
with gr.Column(scale=5, min_width=50): | |
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15) | |
with gr.Row(): | |
remove_button_3 = gr.Button("Remove", size="sm") | |
# Result and Progress Area | |
with gr.Column(elem_id="result_column"): | |
progress_bar = gr.Markdown(elem_id="progress", visible=False) | |
with gr.Column(elem_id="result_box"): # Box를 Column으로 변경 | |
result = gr.Image( | |
label="Generated Image", | |
interactive=False, | |
elem_classes=["generated-image"], | |
container=True, | |
elem_id="result_image", | |
width="100%" | |
) | |
with gr.Accordion("History", open=False): | |
history_gallery = gr.Gallery( | |
label="History", | |
columns=6, | |
object_fit="contain", | |
interactive=False, | |
elem_classes=["history-gallery"] | |
) | |
# Advanced Settings | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
input_image = gr.Image(label="Input image", type="filepath") | |
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
# Custom LoRA Section | |
with gr.Column(): | |
with gr.Group(): | |
with gr.Row(elem_id="custom_lora_structure"): | |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150) | |
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) | |
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) | |
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co./models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") | |
# Event Handlers | |
gallery.select( | |
update_selection, | |
inputs=[selected_indices, loras_state, width, height], | |
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, | |
lora_scale_1, lora_scale_2, lora_scale_3, width, height, | |
lora_image_1, lora_image_2, lora_image_3] | |
) | |
remove_button_1.click( | |
remove_lora_1, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, | |
lora_scale_1, lora_scale_2, lora_scale_3, | |
lora_image_1, lora_image_2, lora_image_3] | |
) | |
remove_button_2.click( | |
remove_lora_2, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, | |
lora_scale_1, lora_scale_2, lora_scale_3, | |
lora_image_1, lora_image_2, lora_image_3] | |
) | |
remove_button_3.click( | |
remove_lora_3, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, | |
lora_scale_1, lora_scale_2, lora_scale_3, | |
lora_image_1, lora_image_2, lora_image_3] | |
) | |
randomize_button.click( | |
randomize_loras, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, | |
lora_scale_1, lora_scale_2, lora_scale_3, | |
lora_image_1, lora_image_2, lora_image_3, prompt] | |
) | |
add_custom_lora_button.click( | |
add_custom_lora, | |
inputs=[custom_lora, selected_indices, loras_state], | |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, | |
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, | |
lora_image_1, lora_image_2, lora_image_3] | |
) | |
remove_custom_lora_button.click( | |
remove_custom_lora, | |
inputs=[selected_indices, loras_state], | |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, | |
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, | |
lora_image_1, lora_image_2, lora_image_3] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, | |
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, | |
randomize_seed, seed, width, height, loras_state], | |
outputs=[result, seed, progress_bar] | |
).then( | |
fn=lambda x, history: update_history(x, history) if x is not None else history, | |
inputs=[result, history_gallery], | |
outputs=history_gallery | |
) | |
# 새로고침 버튼 이벤트 핸들러 | |
def refresh_gallery(): | |
updated_loras = refresh_models(huggingface_token) | |
return ( | |
gr.update(value=[(item["image"], item["title"]) for item in updated_loras]), | |
updated_loras | |
) | |
refresh_button.click( | |
refresh_gallery, | |
outputs=[gallery, loras_state] | |
) | |
if __name__ == "__main__": | |
app.queue(max_size=20) | |
app.launch(debug=True) |