File size: 34,682 Bytes
e5c3be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image, FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import requests
import pandas as pd
from transformers import pipeline
from gradio_imageslider import ImageSlider
import numpy as np
import warnings


huggingface_token = os.getenv("HUGGINFACE_TOKEN")


translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")


        
#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16

device = "cuda" if torch.cuda.is_available() else "cpu"

# 공통 FLUX 모델 로드
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

# LoRA를 위한 설정
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)

# Image-to-Image 파이프라인 설정
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
    base_model,
    vae=good_vae,
    transformer=pipe.transformer,
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    text_encoder_2=pipe.text_encoder_2,
    tokenizer_2=pipe.tokenizer_2,
    torch_dtype=dtype
).to(device)

# Upscale을 위한 ControlNet 설정
controlnet = FluxControlNetModel.from_pretrained(
    "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)

# Upscale 파이프라인 설정 (기존 pipe 재사용)
pipe_upscale = FluxControlNetPipeline(
    vae=pipe.vae,
    text_encoder=pipe.text_encoder,
    text_encoder_2=pipe.text_encoder_2,
    tokenizer=pipe.tokenizer,
    tokenizer_2=pipe.tokenizer_2,
    transformer=pipe.transformer,
    scheduler=pipe.scheduler,
    controlnet=controlnet
).to(device)

MAX_SEED = 2**32 - 1
MAX_PIXEL_BUDGET = 1024 * 1024

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def download_file(url, directory=None):
    if directory is None:
        directory = os.getcwd()  # Use current working directory if not specified
    
    # Get the filename from the URL
    filename = url.split('/')[-1]
    
    # Full path for the downloaded file
    filepath = os.path.join(directory, filename)
    
    # Download the file
    response = requests.get(url)
    response.raise_for_status()  # Raise an exception for bad status codes
    
    # Write the content to the file
    with open(filepath, 'wb') as file:
        file.write(response.content)
    
    return filepath
            
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
    selected_index = evt.index
    selected_indices = selected_indices or []
    if selected_index in selected_indices:
        selected_indices.remove(selected_index)
    else:
        if len(selected_indices) < 2:
            selected_indices.append(selected_index)
        else:
            gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
            return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update()

    selected_info_1 = "Select a LoRA 1"
    selected_info_2 = "Select a LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨"
        lora_image_2 = lora2['image']

    if selected_indices:
        last_selected_lora = loras_state[selected_indices[-1]]
        new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
    else:
        new_placeholder = "Type a prompt after selecting a LoRA"

    return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2

def remove_lora_1(selected_indices, loras_state):
    if len(selected_indices) >= 1:
        selected_indices.pop(0)
    selected_info_1 = "Select a LoRA 1"
    selected_info_2 = "Select a LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

def remove_lora_2(selected_indices, loras_state):
    if len(selected_indices) >= 2:
        selected_indices.pop(1)
    selected_info_1 = "Select LoRA 1"
    selected_info_2 = "Select LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

def randomize_loras(selected_indices, loras_state):
    try:
        if len(loras_state) < 2:
            raise gr.Error("Not enough LoRAs to randomize.")
        selected_indices = random.sample(range(len(loras_state)), 2)
        lora1 = loras_state[selected_indices[0]]
        lora2 = loras_state[selected_indices[1]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨"
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨"
        lora_scale_1 = 1.15
        lora_scale_2 = 1.15
        lora_image_1 = lora1['image']
        lora_image_2 = lora2['image']
        random_prompt = random.choice(prompt_values)
        return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt
    except Exception as e:
        print(f"Error in randomize_loras: {str(e)}")
        return "Error", "Error", [], 1.15, 1.15, None, None, ""

def add_custom_lora(custom_lora, selected_indices, current_loras):
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
            if existing_item_index is None:
                if repo.endswith(".safetensors") and repo.startswith("http"):
                    repo = download_file(repo)
                new_item = {
                    "image": image if image else "/home/user/app/custom.png",
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(f"New LoRA: {new_item}")
                existing_item_index = len(current_loras)
                current_loras.append(new_item)
            
            # Update gallery
            gallery_items = [(item["image"], item["title"]) for item in current_loras]
            # Update selected_indices if there's room
            if len(selected_indices) < 2:
                selected_indices.append(existing_item_index)
            else:
                gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")

            # Update selected_info and images
            selected_info_1 = "Select a LoRA 1"
            selected_info_2 = "Select a LoRA 2"
            lora_scale_1 = 1.15
            lora_scale_2 = 1.15
            lora_image_1 = None
            lora_image_2 = None
            if len(selected_indices) >= 1:
                lora1 = current_loras[selected_indices[0]]
                selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
                lora_image_1 = lora1['image'] if lora1['image'] else None
            if len(selected_indices) >= 2:
                lora2 = current_loras[selected_indices[1]]
                selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
                lora_image_2 = lora2['image'] if lora2['image'] else None
            print("Finished adding custom LoRA")
            return (
                current_loras,
                gr.update(value=gallery_items),
                selected_info_1, 
                selected_info_2,
                selected_indices,
                lora_scale_1,
                lora_scale_2,
                lora_image_1,
                lora_image_2
            )
        except Exception as e:
            print(e)
            gr.Warning(str(e))
            return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
    else:
        return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()

def remove_custom_lora(selected_indices, current_loras):
    if current_loras:
        custom_lora_repo = current_loras[-1]['repo']
        # Remove from loras list
        current_loras = current_loras[:-1]
        # Remove from selected_indices if selected
        custom_lora_index = len(current_loras)
        if custom_lora_index in selected_indices:
            selected_indices.remove(custom_lora_index)
    # Update gallery
    gallery_items = [(item["image"], item["title"]) for item in current_loras]
    # Update selected_info and images
    selected_info_1 = "Select a LoRA 1"
    selected_info_2 = "Select a LoRA 2"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = current_loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = current_loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return (
        current_loras,
        gr.update(value=gallery_items),
        selected_info_1,
        selected_info_2,
        selected_indices,
        lora_scale_1,
        lora_scale_2,
        lora_image_1,
        lora_image_2
    )

@spaces.GPU(duration=75)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
    print("Generating image...")
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": 1.0},
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img

@spaces.GPU(duration=75)
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
    pipe_i2i.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": 1.0},
        output_type="pil",
    ).images[0]
    return final_image

def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
    try:
        # 한글 감지 및 번역
        if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
            translated = translator(prompt, max_length=512)[0]['translation_text']
            print(f"Original prompt: {prompt}")
            print(f"Translated prompt: {translated}")
            prompt = translated

        if not selected_indices:
            raise gr.Error("You must select at least one LoRA before proceeding.")

        selected_loras = [loras_state[idx] for idx in selected_indices]

        # Build the prompt with trigger words
        prepends = []
        appends = []
        for lora in selected_loras:
            trigger_word = lora.get('trigger_word', '')
            if trigger_word:
                if lora.get("trigger_position") == "prepend":
                    prepends.append(trigger_word)
                else:
                    appends.append(trigger_word)
        prompt_mash = " ".join(prepends + [prompt] + appends)
        print("Prompt Mash: ", prompt_mash)

        # Unload previous LoRA weights
        with calculateDuration("Unloading LoRA"):
            pipe.unload_lora_weights()
            pipe_i2i.unload_lora_weights()
            
        print(pipe.get_active_adapters())
        # Load LoRA weights with respective scales
        lora_names = []
        lora_weights = []
        with calculateDuration("Loading LoRA weights"):
            for idx, lora in enumerate(selected_loras):
                lora_name = f"lora_{idx}"
                lora_names.append(lora_name)
                lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
                lora_path = lora['repo']
                weight_name = lora.get("weights")
                print(f"Lora Path: {lora_path}")
                if image_input is not None:
                    if weight_name:
                        pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
                    else:
                        pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
                else:
                    if weight_name:
                        pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
                    else:
                        pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
            print("Loaded LoRAs:", lora_names)
            print("Adapter weights:", lora_weights)
            if image_input is not None:
                pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
            else:
                pipe.set_adapters(lora_names, adapter_weights=lora_weights)
        print(pipe.get_active_adapters())
        # Set random seed for reproducibility
        with calculateDuration("Randomizing seed"):
            if randomize_seed:
                seed = random.randint(0, MAX_SEED)

        # Generate image
        if image_input is not None:
            final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
        else:
            image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
            final_image = None
            step_counter = 0
            for image in image_generator:
                step_counter += 1
                final_image = image
                progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
                yield image, seed, gr.update(value=progress_bar, visible=True)
            


        if final_image is None:
            raise Exception("Failed to generate image")
        
        return final_image, seed, gr.update(visible=False)
    except Exception as e:
        print(f"Error in run_lora: {str(e)}")
        return None, seed, gr.update(visible=False)



run_lora.zerogpu = True

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link)
        base_model = model_card.data.get("base_model")
        print(f"Base model: {base_model}")
        if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
            raise Exception("Not a FLUX LoRA!")
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co./{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem()
        safetensors_name = None
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co./{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
        if not safetensors_name:
            raise gr.Error("No *.safetensors file found in the repository")
        return split_link[1], link, safetensors_name, trigger_word, image_url
    else:
        raise gr.Error("Invalid Hugging Face repository link")

def check_custom_model(link):
    if link.endswith(".safetensors"):
        # Treat as direct link to the LoRA weights
        title = os.path.basename(link)
        repo = link
        path = None  # No specific weight name
        trigger_word = ""
        image_url = None
        return title, repo, path, trigger_word, image_url
    elif link.startswith("https://"):
        if "huggingface.co" in link:
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
        else:
            raise Exception("Unsupported URL")
    else:
        # Assume it's a Hugging Face model path
        return get_huggingface_safetensors(link)

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if history is None:
        history = []
    if new_image is not None:
        history.insert(0, new_image)
    return history

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.25em}
#gallery .grid-wrap{height: 5vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
#component-8, .button_total{height: 100%; align-self: stretch;}
#loaded_loras [data-testid="block-info"]{font-size:80%}
#custom_lora_structure{background: var(--block-background-fill)}
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
#random_btn{font-size: 300%}
#component-11{align-self: stretch;}
footer {visibility: hidden;}
'''

# 업스케일 관련 함수 추가
def process_input(input_image, upscale_factor, **kwargs):
    w, h = input_image.size
    w_original, h_original = w, h
    aspect_ratio = w / h

    was_resized = False

    max_size = int(np.sqrt(MAX_PIXEL_BUDGET / (upscale_factor ** 2)))
    if w > max_size or h > max_size:
        if w > h:
            w_new = max_size
            h_new = int(w_new / aspect_ratio)
        else:
            h_new = max_size
            w_new = int(h_new * aspect_ratio)
        
        input_image = input_image.resize((w_new, h_new), Image.LANCZOS)
        was_resized = True
        gr.Info(f"Input image resized to {w_new}x{h_new} to fit within pixel budget after upscaling.")

    # resize to multiple of 8
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8

    return input_image.resize((w, h)), w_original, h_original, was_resized
    
from PIL import Image
import numpy as np

@spaces.GPU
def infer_upscale(
    seed,
    randomize_seed,
    input_image,
    num_inference_steps,
    upscale_factor,
    controlnet_conditioning_scale,
    progress=gr.Progress(track_tqdm=True),
):
    if input_image is None:
        return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value="Please upload an image for upscaling.")

    try:
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        input_image, w_original, h_original, was_resized = process_input(input_image, upscale_factor)

        # rescale with upscale factor
        w, h = input_image.size
        control_image = input_image.resize((w * upscale_factor, h * upscale_factor), Image.LANCZOS)

        generator = torch.Generator(device=device).manual_seed(seed)

        gr.Info("Upscaling image...")
        # 모든 텐서를 동일한 디바이스로 이동
        pipe_upscale.to(device)
        
        # Ensure the image is in RGB format
        if control_image.mode != 'RGB':
            control_image = control_image.convert('RGB')
        
        # Convert to tensor and add batch dimension
        control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
        
        with torch.no_grad():
            image = pipe_upscale(
                prompt="",
                control_image=control_image,
                controlnet_conditioning_scale=controlnet_conditioning_scale,
                num_inference_steps=num_inference_steps,
                guidance_scale=3.5,
                generator=generator,
            ).images[0]

        # Convert the image back to PIL Image
        if isinstance(image, torch.Tensor):
            image = image.cpu().permute(1, 2, 0).numpy()
        
        # Ensure the image data is in the correct range
        image = np.clip(image * 255, 0, 255).astype(np.uint8)
        image = Image.fromarray(image)

        if was_resized:
            gr.Info(
                f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
            )
            image = image.resize((w_original * upscale_factor, h_original * upscale_factor), Image.LANCZOS)

        return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
    except Exception as e:
        print(f"Error in infer_upscale: {str(e)}")
        import traceback
        traceback.print_exc()
        return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value=f"Error: {str(e)}")
        
def check_upscale_input(input_image, *args):
    if input_image is None:
        return gr.update(interactive=False), *args, gr.update(visible=True, value="Please upload an image for upscaling.")
    return gr.update(interactive=True), *args, gr.update(visible=False)
    
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
    loras_state = gr.State(loras)
    selected_indices = gr.State([])
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1):
            generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
    
    with gr.Row(elem_id="loaded_loras"):
        with gr.Column(scale=1, min_width=25):
            randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
        with gr.Column(scale=8):
            with gr.Row():
                with gr.Column(scale=0, min_width=50):
                    lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                with gr.Column(scale=3, min_width=100):
                    selected_info_1 = gr.Markdown("Select a LoRA 1")
                with gr.Column(scale=5, min_width=50):
                    lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
            with gr.Row():
                remove_button_1 = gr.Button("Remove", size="sm")
        with gr.Column(scale=8):
            with gr.Row():
                with gr.Column(scale=0, min_width=50):
                    lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                with gr.Column(scale=3, min_width=100):
                    selected_info_2 = gr.Markdown("Select a LoRA 2")
                with gr.Column(scale=5, min_width=50):
                    lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
            with gr.Row():
                remove_button_2 = gr.Button("Remove", size="sm")
    
    with gr.Row():
        with gr.Column():
            with gr.Group():
                with gr.Row(elem_id="custom_lora_structure"):
                    custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
                    add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
                remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
                gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co./models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="Or pick from the LoRA Explorer gallery",
                allow_preview=False,
                columns=4,
                elem_id="gallery"
            )
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            result = gr.Image(label="Generated Image", interactive=False)
            with gr.Accordion("History", open=False):
                history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                input_image = gr.Image(label="Input image", type="filepath")
                image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)

# 업스케일 관련 UI 추가
    with gr.Row():
        upscale_button = gr.Button("Upscale", interactive=False)

    with gr.Row():
        with gr.Column(scale=4):
            upscale_input = gr.Image(label="Input Image for Upscaling", type="pil")
        with gr.Column(scale=1):
            upscale_steps = gr.Slider(
                label="Number of Inference Steps for Upscaling",
                minimum=8,
                maximum=50,
                step=1,
                value=28,
            )
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=4,
                step=1,
                value=4,
            )
            controlnet_conditioning_scale = gr.Slider(
                label="Controlnet Conditioning Scale",
                minimum=0.1,
                maximum=1.0,
                step=0.05,
                value=0.5,  # 기본값을 0.5로 낮춤
            )            
            upscale_seed = gr.Slider(
                label="Seed for Upscaling",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            upscale_randomize_seed = gr.Checkbox(label="Randomize seed for Upscaling", value=True)
            upscale_error = gr.Markdown(visible=False, value="Please provide an input image for upscaling.")
    
    with gr.Row():
        upscale_result = gr.Image(label="Upscaled Image", type="pil")
        upscale_seed_output = gr.Number(label="Seed Used", precision=0)


    gallery.select(
        update_selection,
        inputs=[selected_indices, loras_state, width, height],
        outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
    )
    remove_button_1.click(
        remove_lora_1,
        inputs=[selected_indices, loras_state],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    remove_button_2.click(
        remove_lora_2,
        inputs=[selected_indices, loras_state],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    randomize_button.click(
        randomize_loras,
        inputs=[selected_indices, loras_state],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
    )
    add_custom_lora_button.click(
        add_custom_lora,
        inputs=[custom_lora, selected_indices, loras_state],
        outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    remove_custom_lora_button.click(
        remove_custom_lora,
        inputs=[selected_indices, loras_state],
        outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
        outputs=[result, seed, progress_bar]
    ).then(
        fn=lambda x, history: update_history(x, history) if x is not None else history,
        inputs=[result, history_gallery],
        outputs=history_gallery,
    )

    upscale_input.upload(
        lambda x: gr.update(interactive=x is not None),
        inputs=[upscale_input],
        outputs=[upscale_button]
    )
    
    upscale_error = gr.Markdown(visible=False, value="")

    upscale_button.click(
        infer_upscale,
        inputs=[
            upscale_seed,
            upscale_randomize_seed,
            upscale_input,
            upscale_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        outputs=[
            upscale_result,
            upscale_seed_output,
            upscale_steps,
            upscale_factor,
            controlnet_conditioning_scale,
            upscale_randomize_seed,
            upscale_error
        ],

    ).then(
        infer_upscale,
        inputs=[
        upscale_seed,
            upscale_randomize_seed,
            upscale_input,
            upscale_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        outputs=[upscale_result, upscale_seed_output]
    )


if __name__ == "__main__":
    app.queue(max_size=20)
    app.launch(debug=True)