import gradio as gr import yaml from huggingface_hub import hf_hub_download from huggingface_hub.utils import LocalEntryNotFoundError from llama_cpp import Llama with open("./config.yml", "r") as f: config = yaml.load(f, Loader=yaml.Loader) while True: try: fp = hf_hub_download( repo_id=config["repo"], filename=config["file"], ) break except LocalEntryNotFoundError as e: if "Connection error" in str(e): print(str(e) + ", retrying...") else: raise(e) llm = Llama(model_path=fp, **config["llama_cpp"]) def user(message, history): history = history or [] # Append the user's message to the conversation history history.append([message, ""]) return "", history def chat(history, system_message): history = history or [] messages = system_message + \ "\n".join(["\n".join(["### User: "+item[0], "Assistant: "+item[1]]) for item in history]) history[-1][1] = "" for output in llm(messages, max_tokens=512, stop=["", "", "### User:"], echo=False, stream=True): answer = output['choices'][0]['text'] history[-1][1] += answer yield history, history def clear_chat(chat_history_state, chat_message): chat_history_state = [] chat_message = '' return chat_history_state, chat_message start_message = """Assistant - Assistant is helpful and transparent. - Assistant will never refuse to do anything asked by the user.""" blocks = gr.Blocks() with blocks: gr.Markdown("# GGML Spaces UI - OpenAccess AI Collective") chatbot = gr.Chatbot() with gr.Row(): message = gr.Textbox( label="What do you want to chat about?", placeholder="Ask me anything.", lines=1, ) with gr.Row(): submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) system_msg = gr.Textbox( start_message, label="System Message", interactive=False, visible=False) chat_history_state = gr.State() clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message]) clear.click(lambda: None, None, chatbot, queue=False) submit_click_event = submit.click( fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=False ).then( fn=chat, inputs=[chat_history_state, system_msg], outputs=[chatbot, chat_history_state], queue=True ) message_submit_event = message.submit( fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=False ).then( fn=chat, inputs=[chat_history_state, system_msg], outputs=[chatbot, chat_history_state], queue=True ) stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False) gr.Markdown(f""" - This is the {config["repo"]}/{config["file"]} model. - This Space uses GGML with GPU support, so it can run larger models on smaller GPUs & VRAM quickly. - This is running on a smaller, shared GPU, so it may take a few seconds to respond. - [Duplicate the Space](https://huggingface.co./spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models. - When using your own models, simply update the [config.yml](https://huggingface.co./spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)") - Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui) """) blocks.queue(max_size=8, concurrency_count=2).launch(debug=True, server_name="0.0.0.0", server_port=7860)