JarrettYe commited on
Commit
983012f
·
verified ·
1 Parent(s): c488c9e

Add application file

Browse files
Files changed (3) hide show
  1. .gitignore +4 -0
  2. app.py +187 -0
  3. requirements.txt +3 -0
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ .idea/
2
+ __pycache__
3
+ projects
4
+ .DS_Store
app.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio.components import Textbox, Slider, Plot
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ from tqdm.auto import tqdm
6
+
7
+ plt.style.use('seaborn-v0_8-whitegrid')
8
+
9
+ columns = ["difficulty", "stability", "retrievability", "delta_t",
10
+ "reps", "lapses", "last_date", "due", "ivl", "cost", "rand"]
11
+ col = {key: i for i, key in enumerate(columns)}
12
+
13
+
14
+ def simulate(w, request_retention=0.9, deck_size=10000, learn_span=100, max_cost_perday=200, max_ivl=36500, recall_cost=10, forget_cost=30, learn_cost=10):
15
+ card_table = np.zeros((len(columns), deck_size))
16
+ card_table[col["due"]] = learn_span
17
+ card_table[col["difficulty"]] = 1e-10
18
+ card_table[col["stability"]] = 1e-10
19
+
20
+ review_cnt_per_day = np.zeros(learn_span)
21
+ learn_cnt_per_day = np.zeros(learn_span)
22
+ memorized_cnt_per_day = np.zeros(learn_span)
23
+
24
+ def cal_next_recall_stability(s, r, d, response):
25
+ if response == 1:
26
+ return s * (1 + np.exp(w[8]) * (11 - d) * np.power(s, -w[9]) * (np.exp((1 - r) * w[10]) - 1))
27
+ else:
28
+ return np.minimum(w[11] * np.power(d, -w[12]) * (np.power(s + 1, w[13]) - 1) * np.exp((1 - r) * w[14]), s)
29
+
30
+ for today in tqdm(range(learn_span)):
31
+ has_learned = card_table[col["stability"]] > 1e-10
32
+ card_table[col["delta_t"]][has_learned] = today - \
33
+ card_table[col["last_date"]][has_learned]
34
+ card_table[col["retrievability"]][has_learned] = np.power(
35
+ 1 + card_table[col["delta_t"]][has_learned] / (9 * card_table[col["stability"]][has_learned]), -1)
36
+
37
+ card_table[col["cost"]] = 0
38
+ need_review = card_table[col["due"]] <= today
39
+ card_table[col["rand"]][need_review] = np.random.rand(
40
+ np.sum(need_review))
41
+ forget = card_table[col["rand"]] > card_table[col["retrievability"]]
42
+ card_table[col["cost"]][need_review & forget] = forget_cost
43
+ card_table[col["cost"]][need_review & ~forget] = recall_cost
44
+ true_review = need_review & (
45
+ np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
46
+ card_table[col["last_date"]][true_review] = today
47
+
48
+ card_table[col["lapses"]][true_review & forget] += 1
49
+ card_table[col["reps"]][true_review & ~forget] += 1
50
+
51
+ card_table[col["stability"]][true_review & forget] = cal_next_recall_stability(
52
+ card_table[col["stability"]][true_review & forget], card_table[col["retrievability"]][true_review & forget], card_table[col["difficulty"]][true_review & forget], 0)
53
+
54
+ card_table[col["stability"]][true_review & ~forget] = cal_next_recall_stability(
55
+ card_table[col["stability"]][true_review & ~forget], card_table[col["retrievability"]][true_review & ~forget], card_table[col["difficulty"]][true_review & ~forget], 1)
56
+
57
+ card_table[col["difficulty"]][true_review & forget] = np.clip(
58
+ card_table[col["difficulty"]][true_review & forget] + 2 * w[6], 1, 10)
59
+
60
+ need_learn = card_table[col["due"]] == learn_span
61
+ card_table[col["cost"]][need_learn] = learn_cost
62
+ true_learn = need_learn & (
63
+ np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
64
+ card_table[col["last_date"]][true_learn] = today
65
+ first_ratings = np.random.randint(0, 4, np.sum(true_learn))
66
+ card_table[col["stability"]][true_learn] = np.choose(
67
+ first_ratings, w[:4])
68
+ card_table[col["difficulty"]][true_learn] = w[4] - \
69
+ w[5] * (first_ratings - 3)
70
+
71
+ card_table[col["ivl"]][true_review | true_learn] = np.clip(np.round(
72
+ 9 * card_table[col["stability"]][true_review | true_learn] * (1 / request_retention - 1), 0), 1, max_ivl)
73
+ card_table[col["due"]][true_review | true_learn] = today + \
74
+ card_table[col["ivl"]][true_review | true_learn]
75
+
76
+ review_cnt_per_day[today] = np.sum(true_review)
77
+ learn_cnt_per_day[today] = np.sum(true_learn)
78
+ memorized_cnt_per_day[today] = card_table[col["retrievability"]].sum()
79
+ return card_table, review_cnt_per_day, learn_cnt_per_day, memorized_cnt_per_day
80
+
81
+
82
+ def interface_func(weights: str, learning_time: int, learn_span: int, deck_size: int, max_ivl: int, recall_cost: int, forget_cost: int, learn_cost: int,
83
+ progress=gr.Progress(track_tqdm=True)):
84
+ np.random.seed(42)
85
+ w = list(map(lambda x: float(x.strip()), weights.split(',')))
86
+ max_cost_perday = learning_time * 60
87
+
88
+ def moving_average(data, window_size=learn_span//20):
89
+ weights = np.ones(window_size) / window_size
90
+ return np.convolve(data, weights, mode='valid')
91
+
92
+ for request_retention in [0.95, 0.9, 0.85, 0.8, 0.75]:
93
+ (_,
94
+ review_cnt_per_day,
95
+ learn_cnt_per_day,
96
+ memorized_cnt_per_day) = simulate(w,
97
+ request_retention=request_retention,
98
+ deck_size=deck_size,
99
+ learn_span=learn_span,
100
+ max_cost_perday=max_cost_perday,
101
+ max_ivl=max_ivl,
102
+ recall_cost=recall_cost,
103
+ forget_cost=forget_cost,
104
+ learn_cost=learn_cost)
105
+
106
+ plt.figure(1)
107
+ plt.plot(moving_average(review_cnt_per_day),
108
+ label=f"R={request_retention*100:.0f}%")
109
+ plt.title("Review Count per Day")
110
+ plt.legend()
111
+ plt.figure(2)
112
+ plt.plot(moving_average(learn_cnt_per_day),
113
+ label=f"R={request_retention*100:.0f}%")
114
+ plt.title("Learn Count per Day")
115
+ plt.legend()
116
+ plt.figure(3)
117
+ plt.plot(np.cumsum(learn_cnt_per_day),
118
+ label=f"R={request_retention*100:.0f}%")
119
+ plt.title("Cumulative Learn Count")
120
+ plt.legend()
121
+ plt.figure(4)
122
+ plt.plot(memorized_cnt_per_day,
123
+ label=f"R={request_retention*100:.0f}%")
124
+ plt.title("Memorized Count per Day")
125
+ plt.legend()
126
+
127
+ return plt.figure(1), plt.figure(2), plt.figure(3), plt.figure(4)
128
+
129
+ description = f"""
130
+ # FSRS4Anki Simulator
131
+
132
+ Here is a simulator for FSRS4Anki. It can simulate the learning process of a deck with given weights and parameters.
133
+
134
+ It will help you to find the expected requestRetention for FSRS4Anki.
135
+
136
+ The simulator assumes that you spend the same amount of time on Anki every day.
137
+ """
138
+
139
+ with gr.Blocks() as demo:
140
+ with gr.Box():
141
+ gr.Markdown(description)
142
+ with gr.Box():
143
+ with gr.Row():
144
+ with gr.Column():
145
+ weights = Textbox(label="Weights", lines=1,
146
+ value="0.4, 0.6, 2.4, 5.8, 4.93, 0.94, 0.86, 0.01, 1.49, 0.14, 0.94, 2.18, 0.05, 0.34, 1.26, 0.29, 2.61")
147
+ learning_time = Slider(label="Learning Time perday (minutes)",
148
+ minimum=5, maximum=1440, step=5, value=30)
149
+ learn_span = Slider(label="Learning Period (days)", minimum=30,
150
+ maximum=3650, step=10, value=365)
151
+ deck_size = Slider(label="Deck Size (cards)", minimum=100,
152
+ maximum=100000, step=100, value=10000)
153
+ with gr.Column():
154
+ max_ivl = Slider(label="Maximum Interval (days)", minimum=30,
155
+ maximum=36500, step=10, value=36500)
156
+ recall_cost = Slider(label="Review Cost (seconds)", minimum=1,
157
+ maximum=600, step=1, value=10)
158
+ forget_cost = Slider(label="Relearn Cost (seconds)",
159
+ minimum=1, maximum=600, step=1, value=30)
160
+ learn_cost = Slider(label="Learn Cost (seconds)", minimum=1,
161
+ maximum=600, step=1, value=10)
162
+ with gr.Row():
163
+ btn_plot = gr.Button("Simulate")
164
+ with gr.Row():
165
+ with gr.Column():
166
+ review_count = Plot(label="Review Count per Day")
167
+ learn_count = Plot(label="Learn Count per Day")
168
+ with gr.Column():
169
+ cumulative_learn_count = Plot(label="Cumulative Learn Count")
170
+ memorized_count = Plot(label="Memorized Count per Day")
171
+
172
+ btn_plot.click(
173
+ fn=interface_func,
174
+ inputs=[weights,
175
+ learning_time,
176
+ learn_span,
177
+ deck_size,
178
+ max_ivl,
179
+ recall_cost,
180
+ forget_cost,
181
+ learn_cost,
182
+ ],
183
+ outputs=[review_count, learn_count,
184
+ cumulative_learn_count, memorized_count],
185
+ )
186
+
187
+ demo.queue().launch(show_error=True)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ matplotlib>=3.7.0
2
+ numpy>=1.22.4
3
+ tqdm>=4.64.1