File size: 20,479 Bytes
599688f
 
 
 
8a31745
599688f
 
 
 
 
 
 
8a31745
 
 
 
 
 
 
 
 
 
 
 
599688f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a31745
599688f
8a31745
599688f
 
 
 
 
8a31745
 
 
599688f
8ea545e
599688f
8ea545e
 
 
 
 
8a31745
8ea545e
 
 
8a31745
 
 
 
 
 
 
 
 
 
 
 
599688f
8ea545e
 
 
599688f
8ea545e
8a31745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599688f
 
8a31745
 
 
 
 
 
 
 
 
8ea545e
 
599688f
8ea545e
599688f
 
8a31745
 
 
 
599688f
 
 
 
 
8a31745
 
 
 
 
 
 
 
 
 
599688f
 
 
8a31745
599688f
 
 
 
8a31745
599688f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a31745
 
599688f
 
 
 
8a31745
 
 
 
 
599688f
 
 
 
 
 
8a31745
 
599688f
8a31745
 
599688f
 
8a31745
599688f
 
 
 
 
8a31745
599688f
 
 
 
8a31745
599688f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a31745
 
 
599688f
 
 
 
8a31745
 
 
 
 
8ea545e
 
 
 
 
 
8a31745
 
8ea545e
8a31745
 
8ea545e
 
8a31745
8ea545e
 
 
 
 
8a31745
8ea545e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599688f
 
 
8ea545e
 
 
 
 
 
599688f
 
8ea545e
599688f
 
 
 
 
 
8ea545e
599688f
 
 
8ea545e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599688f
8ea545e
599688f
 
8ea545e
599688f
 
 
 
 
8ea545e
599688f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "from pathlib import Path\n",
    "\n",
    "import gradio as gr\n",
    "import pandas as pd\n",
    "\n",
    "TITLE = \"\"\"<h1 align=\"center\" id=\"space-title\">LLM Leaderboard for H4 Models</h1>\"\"\"\n",
    "\n",
    "DESCRIPTION = f\"\"\"\n",
    "Evaluation of H4 and community models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval). All scores are reported as accuracy.\n",
    "\"\"\"\n",
    "\n",
    "BENCHMARKS_TO_SKIP = [\"math\", \"mini_math\"]\n",
    "\n",
    "\n",
    "def get_leaderboard_df(agg : str = \"max\"):\n",
    "    filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
    "\n",
    "    # Parse filepaths to get unique models\n",
    "    models = set()\n",
    "    for filepath in filepaths:\n",
    "        path_parts = Path(filepath).parts\n",
    "        model_revision = \"_\".join(path_parts[1:4])\n",
    "        models.add(model_revision)\n",
    "\n",
    "    # Initialize DataFrame\n",
    "    df = pd.DataFrame(index=list(models))\n",
    "\n",
    "    # Extract data from each file and populate the DataFrame\n",
    "    for filepath in filepaths:\n",
    "        path_parts = Path(filepath).parts\n",
    "        date = filepath.stem.split(\"_\")[-1][:-3]\n",
    "        model_revision = \"_\".join(path_parts[1:4]) + \"_\" + date\n",
    "        task = path_parts[4]\n",
    "        df.loc[model_revision, \"Date\"] = date\n",
    "\n",
    "        with open(filepath, \"r\") as file:\n",
    "            data = json.load(file)\n",
    "            first_result_key = next(iter(data[\"results\"]))  # gets the first key in 'results'\n",
    "            # Skip benchmarks that we don't want to include in the leaderboard\n",
    "            if task.lower() in BENCHMARKS_TO_SKIP:\n",
    "                continue\n",
    "            # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
    "            if task.lower() == \"truthfulqa\":\n",
    "                value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
    "            # IFEval has several metrics but we report just the prompt-loose-acc one\n",
    "            elif task.lower() == \"ifeval\":\n",
    "                value = data[\"results\"][first_result_key][\"prompt_level_loose_acc\"]\n",
    "            # MMLU has several metrics but we report just the average one\n",
    "            elif task.lower() == \"mmlu\":\n",
    "                value = [v[\"acc\"] for k, v in data[\"results\"].items() if \"_average\" in k.lower()][0]\n",
    "            # HellaSwag and ARC reports acc_norm\n",
    "            elif task.lower() in [\"hellaswag\", \"arc\"]:\n",
    "                value = data[\"results\"][first_result_key][\"acc_norm\"]\n",
    "            # BBH has several metrics but we report just the average one\n",
    "            elif task.lower() == \"bbh\":\n",
    "                if \"all\" in data[\"results\"]:\n",
    "                    value = data[\"results\"][\"all\"][\"acc\"]\n",
    "                else:\n",
    "                    value = -100\n",
    "            # AGIEval reports acc_norm\n",
    "            elif task.lower() == \"agieval\":\n",
    "                value = data[\"results\"][\"all\"][\"acc_norm\"]\n",
    "            # MATH reports qem\n",
    "            elif task.lower() in [\"math\", \"math_v2\", \"aimo_kaggle\"]:\n",
    "                value = data[\"results\"][\"all\"][\"qem\"]\n",
    "            else:\n",
    "                first_metric_key = next(\n",
    "                    iter(data[\"results\"][first_result_key])\n",
    "                )  # gets the first key in the first result\n",
    "                value = data[\"results\"][first_result_key][first_metric_key]  # gets the value of the first metric\n",
    "\n",
    "            # For mini_math we report 5 metrics, one for each level and store each one as a separate row in the dataframe\n",
    "            if task.lower() in [\"mini_math_v2\"]:\n",
    "                for k, v in data[\"results\"].items():\n",
    "                    if k != \"all\":\n",
    "                        level = k.split(\"|\")[1].split(\":\")[-1]\n",
    "                        value = v[\"qem\"]\n",
    "                        df.loc[model_revision, f\"{task}_{level}\"] = value\n",
    "            # For kaggle_pot we report N metrics, one for each prompt and store each one as a separate row in the dataframe\n",
    "            elif task.lower() in [\"aimo_kaggle_medium_pot\"]:\n",
    "                for k, v in data[\"results\"].items():\n",
    "                    if k != \"all\" and \"_average\" not in k:\n",
    "                        version = k.split(\"|\")[1].split(\":\")[-1]\n",
    "                        value = v[\"qem\"] if \"qem\" in v else v[\"score\"]\n",
    "                        df.loc[model_revision, f\"{task}_{version}\"] = value\n",
    "            # For kaggle_pot we report N metrics, one for each prompt and store each one as a separate row in the dataframe\n",
    "            elif task.lower() in [\"aimo_kaggle_hard_pot\"]:\n",
    "                for k, v in data[\"results\"].items():\n",
    "                    if k != \"all\" and \"_average\" not in k:\n",
    "                        version = k.split(\"|\")[1].split(\":\")[-1]\n",
    "                        value = v[\"qem\"] if \"qem\" in v else v[\"score\"]\n",
    "                        df.loc[model_revision, f\"{task}_{version}\"] = value\n",
    "            # For kaggle_tora we report accuracy, so need  to divide by 100\n",
    "            elif task.lower() in [\n",
    "                \"aimo_tora_eval_kaggle_medium\",\n",
    "                \"aimo_tora_eval_kaggle_hard\",\n",
    "                \"aimo_kaggle_fast_eval_hard\",\n",
    "                \"aimo_kaggle_tora_medium\",\n",
    "                \"aimo_kaggle_tora_hard\",\n",
    "                \"aimo_kaggle_tora_medium_extended\",\n",
    "                \"aimo_kaggle_tora_hard_extended\",\n",
    "            ]:\n",
    "                for k, v in data[\"results\"].items():\n",
    "                    value = float(v[\"qem\"]) / 100.0\n",
    "                    df.loc[model_revision, f\"{task}\"] = value\n",
    "            # For AlpacaEval we report base winrate and lenght corrected one\n",
    "            elif task.lower() == \"alpaca_eval\":\n",
    "                value = data[\"results\"][first_result_key][\"win_rate\"]\n",
    "                df.loc[model_revision, \"Alpaca_eval\"] = value / 100.0\n",
    "                value = data[\"results\"][first_result_key][\"length_controlled_winrate\"]\n",
    "                df.loc[model_revision, \"Alpaca_eval_lc\"] = value / 100.0\n",
    "            else:\n",
    "                df.loc[model_revision, task] = float(value)\n",
    "\n",
    "    # Drop rows where every entry is NaN\n",
    "    df = df.dropna(how=\"all\", axis=0, subset=[c for c in df.columns if c != \"Date\"])\n",
    "\n",
    "    # Trim minimath column names\n",
    "    df.columns = [c.replace(\"_level_\", \"_l\") for c in df.columns]\n",
    "\n",
    "    # Trim AIMO column names\n",
    "    df.columns = [c.replace(\"aimo_\", \"\") for c in df.columns]\n",
    "\n",
    "    df.insert(loc=0, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
    "\n",
    "    # Convert all values to percentage\n",
    "    df[df.select_dtypes(include=[\"number\"]).columns] *= 100.0\n",
    "    df = df.sort_values(by=[\"Average\"], ascending=False)\n",
    "    df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(2)\n",
    "    # Strip off date from model name\n",
    "    df[\"Model\"] = df[\"Model\"].apply(lambda x: x.rsplit(\"_\", 1)[0])\n",
    "\n",
    "    # Drop date and aggregate results by model name\n",
    "    df = df.drop(\"Date\", axis=1).groupby(\"Model\").agg(agg).reset_index()\n",
    "\n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = get_leaderboard_df(agg='mean')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "# df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Model</th>\n",
       "      <th>Average</th>\n",
       "      <th>kaggle_tora_medium_extended</th>\n",
       "      <th>kaggle_tora_hard_extended</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1741</th>\n",
       "      <td>AI-MO_deepseek-math-7b-sft_aimo_v38.15.gptq-8bits</td>\n",
       "      <td>28.89</td>\n",
       "      <td>61.45</td>\n",
       "      <td>28.89</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                  Model  Average  \\\n",
       "1741  AI-MO_deepseek-math-7b-sft_aimo_v38.15.gptq-8bits    28.89   \n",
       "\n",
       "      kaggle_tora_medium_extended  kaggle_tora_hard_extended  \n",
       "1741                        61.45                      28.89  "
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.query(\"Model == 'AI-MO_deepseek-math-7b-sft_aimo_v38.15.gptq-8bits'\").dropna(axis=1, how=\"all\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Model</th>\n",
       "      <th>Average</th>\n",
       "      <th>kaggle_tora_medium_extended</th>\n",
       "      <th>kaggle_tora_hard_extended</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1741</th>\n",
       "      <td>AI-MO_deepseek-math-7b-sft_aimo_v38.15.gptq-8bits</td>\n",
       "      <td>65.06</td>\n",
       "      <td>65.06</td>\n",
       "      <td>32.22</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                  Model  Average  \\\n",
       "1741  AI-MO_deepseek-math-7b-sft_aimo_v38.15.gptq-8bits    65.06   \n",
       "\n",
       "      kaggle_tora_medium_extended  kaggle_tora_hard_extended  \n",
       "1741                        65.06                      32.22  "
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.query(\"Model == 'AI-MO_deepseek-math-7b-sft_aimo_v38.15.gptq-8bits'\").dropna(axis=1, how=\"all\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Model</th>\n",
       "      <th>Date</th>\n",
       "      <th>Ifeval</th>\n",
       "      <th>Truthfulqa</th>\n",
       "      <th>Winogrande</th>\n",
       "      <th>Gsm8k</th>\n",
       "      <th>Mmlu</th>\n",
       "      <th>Hellaswag</th>\n",
       "      <th>Arc</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>NousResearch_Nous-Hermes-2-Yi-34B_main</td>\n",
       "      <td>2024-03-04</td>\n",
       "      <td>39.00</td>\n",
       "      <td>61.44</td>\n",
       "      <td>80.58</td>\n",
       "      <td>67.93</td>\n",
       "      <td>76.24</td>\n",
       "      <td>83.79</td>\n",
       "      <td>68.00</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
       "      <td>2024-03-05</td>\n",
       "      <td>55.27</td>\n",
       "      <td>57.78</td>\n",
       "      <td>79.16</td>\n",
       "      <td>76.12</td>\n",
       "      <td>71.18</td>\n",
       "      <td>83.94</td>\n",
       "      <td>64.16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main</td>\n",
       "      <td>2024-03-02</td>\n",
       "      <td>59.33</td>\n",
       "      <td>64.76</td>\n",
       "      <td>78.53</td>\n",
       "      <td>62.17</td>\n",
       "      <td>71.96</td>\n",
       "      <td>85.42</td>\n",
       "      <td>70.82</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>mistralai_Mixtral-8x7B-Instruct-v0.1_main</td>\n",
       "      <td>2024-03-02</td>\n",
       "      <td>55.08</td>\n",
       "      <td>70.79</td>\n",
       "      <td>73.56</td>\n",
       "      <td>59.89</td>\n",
       "      <td>70.60</td>\n",
       "      <td>86.68</td>\n",
       "      <td>72.01</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
       "      <td>2024-03-04</td>\n",
       "      <td>55.27</td>\n",
       "      <td>57.78</td>\n",
       "      <td>79.16</td>\n",
       "      <td>76.12</td>\n",
       "      <td>71.18</td>\n",
       "      <td>83.94</td>\n",
       "      <td>64.16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>269</th>\n",
       "      <td>HuggingFaceH4_starcoder2-15b-ift_v18.0</td>\n",
       "      <td>2024-03-10</td>\n",
       "      <td>21.63</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.83</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>270</th>\n",
       "      <td>HuggingFaceH4_mistral-7b-ift_v49.0</td>\n",
       "      <td>2024-03-07</td>\n",
       "      <td>20.15</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>271</th>\n",
       "      <td>HuggingFaceH4_starchat-beta_main</td>\n",
       "      <td>2024-03-12</td>\n",
       "      <td>8.13</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>272</th>\n",
       "      <td>HuggingFaceH4_starcoder2-15b-ift_v7.0</td>\n",
       "      <td>2024-03-10</td>\n",
       "      <td>12.57</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>3.18</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>273</th>\n",
       "      <td>HuggingFaceH4_zephyr-7b-beta-ift_v1.1</td>\n",
       "      <td>2024-03-13</td>\n",
       "      <td>9.43</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.00</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>274 rows × 9 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                Model        Date  Ifeval  \\\n",
       "0              NousResearch_Nous-Hermes-2-Yi-34B_main  2024-03-04   39.00   \n",
       "1              deepseek-ai_deepseek-llm-67b-chat_main  2024-03-05   55.27   \n",
       "2    NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main  2024-03-02   59.33   \n",
       "3           mistralai_Mixtral-8x7B-Instruct-v0.1_main  2024-03-02   55.08   \n",
       "4              deepseek-ai_deepseek-llm-67b-chat_main  2024-03-04   55.27   \n",
       "..                                                ...         ...     ...   \n",
       "269            HuggingFaceH4_starcoder2-15b-ift_v18.0  2024-03-10   21.63   \n",
       "270                HuggingFaceH4_mistral-7b-ift_v49.0  2024-03-07   20.15   \n",
       "271                  HuggingFaceH4_starchat-beta_main  2024-03-12    8.13   \n",
       "272             HuggingFaceH4_starcoder2-15b-ift_v7.0  2024-03-10   12.57   \n",
       "273             HuggingFaceH4_zephyr-7b-beta-ift_v1.1  2024-03-13    9.43   \n",
       "\n",
       "     Truthfulqa  Winogrande  Gsm8k   Mmlu  Hellaswag    Arc  \n",
       "0         61.44       80.58  67.93  76.24      83.79  68.00  \n",
       "1         57.78       79.16  76.12  71.18      83.94  64.16  \n",
       "2         64.76       78.53  62.17  71.96      85.42  70.82  \n",
       "3         70.79       73.56  59.89  70.60      86.68  72.01  \n",
       "4         57.78       79.16  76.12  71.18      83.94  64.16  \n",
       "..          ...         ...    ...    ...        ...    ...  \n",
       "269         NaN         NaN   0.83    NaN        NaN    NaN  \n",
       "270         NaN         NaN   0.00    NaN        NaN    NaN  \n",
       "271         NaN         NaN    NaN    NaN        NaN    NaN  \n",
       "272         NaN         NaN   3.18    NaN        NaN    NaN  \n",
       "273         NaN         NaN   0.00    NaN        NaN    NaN  \n",
       "\n",
       "[274 rows x 9 columns]"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df[[\"Model\", \"Date\"]].merge(new_df, on=\"Model\", how=\"left\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}