open_llm_leaderboard / backend /app /utils /model_validation.py
alozowski's picture
alozowski HF staff
Improve error messages for model validation and gated model handling
d852c46
raw
history blame
9.19 kB
import json
import logging
import asyncio
import re
from typing import Tuple, Optional, Dict, Any
import aiohttp
from huggingface_hub import HfApi, ModelCard, hf_hub_download
from huggingface_hub import hf_api
from transformers import AutoConfig, AutoTokenizer
from app.config.base import HF_TOKEN, API
from app.utils.logging import LogFormatter
logger = logging.getLogger(__name__)
class ModelValidator:
def __init__(self):
self.token = HF_TOKEN
self.api = HfApi(token=self.token)
self.headers = {"Authorization": f"Bearer {self.token}"} if self.token else {}
async def check_model_card(self, model_id: str) -> Tuple[bool, str, Optional[Dict[str, Any]]]:
"""Check if model has a valid model card"""
try:
logger.info(LogFormatter.info(f"Checking model card for {model_id}"))
# Get model card content using ModelCard.load
try:
model_card = await asyncio.to_thread(
ModelCard.load,
model_id
)
logger.info(LogFormatter.success("Model card found"))
except Exception as e:
error_msg = "Please add a model card to your model to explain how you trained/fine-tuned it."
logger.error(LogFormatter.error(error_msg, e))
return False, error_msg, None
# Check license in model card data
if model_card.data.license is None and not ("license_name" in model_card.data and "license_link" in model_card.data):
error_msg = "License not found. Please add a license to your model card using the `license` metadata or a `license_name`/`license_link` pair."
logger.warning(LogFormatter.warning(error_msg))
return False, error_msg, None
# Enforce card content length
if len(model_card.text) < 200:
error_msg = "Please add a description to your model card, it is too short."
logger.warning(LogFormatter.warning(error_msg))
return False, error_msg, None
logger.info(LogFormatter.success("Model card validation passed"))
return True, "", model_card
except Exception as e:
error_msg = "Failed to validate model card"
logger.error(LogFormatter.error(error_msg, e))
return False, str(e), None
async def get_safetensors_metadata(self, model_id: str, is_adapter: bool = False, revision: str = "main") -> Optional[Dict]:
"""Get metadata from a safetensors file"""
try:
if is_adapter:
metadata = await asyncio.to_thread(
hf_api.parse_safetensors_file_metadata,
model_id,
"adapter_model.safetensors",
token=self.token,
revision=revision,
)
else:
metadata = await asyncio.to_thread(
hf_api.get_safetensors_metadata,
repo_id=model_id,
token=self.token,
revision=revision,
)
return metadata
except Exception as e:
logger.error(f"Failed to get safetensors metadata: {str(e)}")
return None
async def get_model_size(
self,
model_info: Any,
precision: str,
base_model: str,
revision: str
) -> Tuple[Optional[float], Optional[str]]:
"""Get model size in billions of parameters"""
try:
logger.info(LogFormatter.info(f"Checking model size for {model_info.modelId}"))
# Check if model is adapter
is_adapter = any(s.rfilename == "adapter_config.json" for s in model_info.siblings if hasattr(s, 'rfilename'))
# Try to get size from safetensors first
model_size = None
if is_adapter and base_model:
# For adapters, we need both adapter and base model sizes
adapter_meta = await self.get_safetensors_metadata(model_info.id, is_adapter=True, revision=revision)
base_meta = await self.get_safetensors_metadata(base_model, revision="main")
if adapter_meta and base_meta:
adapter_size = sum(adapter_meta.parameter_count.values())
base_size = sum(base_meta.parameter_count.values())
model_size = (adapter_size + base_size) / (2 * 1e9) # Convert to billions, assuming float16
else:
# For regular models, just get the model size
meta = await self.get_safetensors_metadata(model_info.id, revision=revision)
if meta:
total_params = sum(meta.parameter_count.values())
model_size = total_params / (2 * 1e9) # Convert to billions, assuming float16
if model_size is None:
# If model size could not be determined, return an error
return None, "Model size could not be determined"
# Adjust size for GPTQ models
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
model_size = round(size_factor * model_size, 3)
logger.info(LogFormatter.success(f"Model size: {model_size}B parameters"))
return model_size, None
except Exception as e:
logger.error(LogFormatter.error(f"Error while determining model size: {e}"))
return None, str(e)
async def check_chat_template(
self,
model_id: str,
revision: str
) -> Tuple[bool, Optional[str]]:
"""Check if model has a valid chat template"""
try:
logger.info(LogFormatter.info(f"Checking chat template for {model_id}"))
try:
config_file = await asyncio.to_thread(
hf_hub_download,
repo_id=model_id,
filename="tokenizer_config.json",
revision=revision,
repo_type="model"
)
with open(config_file, 'r') as f:
tokenizer_config = json.load(f)
if 'chat_template' not in tokenizer_config:
error_msg = f"The model {model_id} doesn't have a chat_template in its tokenizer_config.json. Please add a chat_template before submitting or submit without it."
logger.error(LogFormatter.error(error_msg))
return False, error_msg
logger.info(LogFormatter.success("Valid chat template found"))
return True, None
except Exception as e:
error_msg = f"Error checking chat_template: {str(e)}"
logger.error(LogFormatter.error(error_msg))
return False, error_msg
except Exception as e:
error_msg = "Failed to check chat template"
logger.error(LogFormatter.error(error_msg, e))
return False, str(e)
async def is_model_on_hub(
self,
model_name: str,
revision: str,
test_tokenizer: bool = False,
trust_remote_code: bool = False
) -> Tuple[bool, Optional[str], Optional[Any]]:
"""Check if model exists and is properly configured on the Hub"""
try:
config = await asyncio.to_thread(
AutoConfig.from_pretrained,
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=self.token,
force_download=True
)
if test_tokenizer:
try:
await asyncio.to_thread(
AutoTokenizer.from_pretrained,
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=self.token
)
except ValueError as e:
return False, f"The tokenizer is not available in an official Transformers release: {e}", None
except Exception:
return False, "The tokenizer cannot be loaded. Ensure the tokenizer class is part of a stable Transformers release and correctly configured.", None
return True, None, config
except ValueError:
return False, "The model requires `trust_remote_code=True` to launch, and for safety reasons, we don't accept such models automatically.", None
except Exception as e:
if "You are trying to access a gated repo." in str(e):
return True, "The model is gated and requires special access permissions.", None
return False, f"The model was not found or is misconfigured on the Hub. Error: {e.args[0]}", None