import io import json import gradio as gr import pandas as pd from huggingface_hub import HfFileSystem RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results" EXCLUDED_KEYS = { "pretty_env_info", "chat_template", "group_subtasks", } # EXCLUDED_RESULTS_KEYS = { # "leaderboard", # } # EXCLUDED_RESULTS_LEADERBOARDS_KEYS = { # "alias", # } TASKS = { "leaderboard_arc_challenge": ("ARC", "leaderboard_arc_challenge"), "leaderboard_bbh": ("BBH", "leaderboard_bbh"), "leaderboard_gpqa": ("GPQA", "leaderboard_gpqa"), "leaderboard_ifeval": ("IFEval", "leaderboard_ifeval"), "leaderboard_math_hard": ("MATH", "leaderboard_math"), "leaderboard_mmlu_pro": ("MMLU-Pro", "leaderboard_mmlu_pro"), "leaderboard_musr": ("MuSR", "leaderboard_musr"), } fs = HfFileSystem() def fetch_result_paths(): paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") return paths def filter_latest_result_path_per_model(paths): from collections import defaultdict d = defaultdict(list) for path in paths: model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1) d[model_id].append(path) return {model_id: max(paths) for model_id, paths in d.items()} def get_result_path_from_model(model_id, result_path_per_model): return result_path_per_model[model_id] def load_data(result_path) -> pd.DataFrame: with fs.open(result_path, "r") as f: data = json.load(f) return data def load_result_dataframe(model_id): result_path = get_result_path_from_model(model_id, latest_result_path_per_model) data = load_data(result_path) model_name = data.get("model_name", "Model") df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}]) # df.columns = df.columns.str.split(".") # .split return a list instead of a tuple return df.set_index(pd.Index([model_name])).reset_index() def display_results(df_1, df_2, task): df = pd.concat([df.set_index("index") for df in [df_1, df_2] if "index" in df.columns]) df = df.T.rename_axis(columns=None) return display_tab("results", df, task), display_tab("configs", df, task) def display_tab(tab, df, task): df = df.style.format(na_rep="") df.hide( [ row for row in df.index if ( not row.startswith(f"{tab}.") or row.startswith(f"{tab}.leaderboard.") or row.endswith(".alias") or (not row.startswith(f"{tab}.{task}") if task != "All" else False) ) ], axis="index", ) start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ") df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index") return df.to_html() def update_tasks(task): return gr.Radio( ["All"] + list(TASKS.values()), label="Tasks", info="Evaluation tasks to be displayed", value="All", interactive=True, ) # if __name__ == "__main__": latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) with gr.Blocks(fill_height=True) as demo: gr.HTML("