|
import io |
|
import json |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import HfFileSystem |
|
|
|
|
|
RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results" |
|
EXCLUDED_KEYS = { |
|
"pretty_env_info", |
|
"chat_template", |
|
"group_subtasks", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TASKS = { |
|
"leaderboard_arc_challenge": ("ARC", "leaderboard_arc_challenge"), |
|
"leaderboard_bbh": ("BBH", "leaderboard_bbh"), |
|
"leaderboard_gpqa": ("GPQA", "leaderboard_gpqa"), |
|
"leaderboard_ifeval": ("IFEval", "leaderboard_ifeval"), |
|
"leaderboard_math_hard": ("MATH", "leaderboard_math"), |
|
"leaderboard_mmlu_pro": ("MMLU-Pro", "leaderboard_mmlu_pro"), |
|
"leaderboard_musr": ("MuSR", "leaderboard_musr"), |
|
} |
|
|
|
fs = HfFileSystem() |
|
|
|
|
|
def fetch_result_paths(): |
|
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") |
|
return paths |
|
|
|
|
|
def filter_latest_result_path_per_model(paths): |
|
from collections import defaultdict |
|
|
|
d = defaultdict(list) |
|
for path in paths: |
|
model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1) |
|
d[model_id].append(path) |
|
return {model_id: max(paths) for model_id, paths in d.items()} |
|
|
|
|
|
def get_result_path_from_model(model_id, result_path_per_model): |
|
return result_path_per_model[model_id] |
|
|
|
|
|
def load_data(result_path) -> pd.DataFrame: |
|
with fs.open(result_path, "r") as f: |
|
data = json.load(f) |
|
return data |
|
|
|
|
|
def load_result_dataframe(model_id): |
|
result_path = get_result_path_from_model(model_id, latest_result_path_per_model) |
|
data = load_data(result_path) |
|
model_name = data.get("model_name", "Model") |
|
df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}]) |
|
|
|
return df.set_index(pd.Index([model_name])).reset_index() |
|
|
|
|
|
def display_results(df_1, df_2, task): |
|
df = pd.concat([df.set_index("index") for df in [df_1, df_2] if "index" in df.columns]) |
|
df = df.T.rename_axis(columns=None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return display_results_tab(df, task), display_configs_tab(df, task) |
|
|
|
|
|
def display_results_tab(df, task): |
|
df = df.style.format(na_rep="") |
|
df.hide( |
|
[ |
|
row |
|
for row in df.index |
|
if ( |
|
not row.startswith("results.") |
|
or row.startswith("results.leaderboard.") |
|
or row.endswith(".alias") |
|
or (not row.startswith(f"results.{task}") if task != "All" else False) |
|
) |
|
], |
|
axis="index", |
|
) |
|
df.format_index(lambda idx: idx[len("results.leaderboard_"):].removesuffix(",none"), axis="index") |
|
return df.to_html() |
|
|
|
|
|
def display_configs_tab(df, task): |
|
df = df.style.format(na_rep="") |
|
df.hide( |
|
[ |
|
row |
|
for row in df.index |
|
if ( |
|
not row.startswith("configs.") |
|
or row.startswith("configs.leaderboard.") |
|
or row.endswith(".alias") |
|
or (not row.startswith(f"configs.{task}") if task != "All" else False) |
|
) |
|
], |
|
axis="index", |
|
) |
|
df.format_index(lambda idx: idx[len("configs.leaderboard_"):], axis="index") |
|
return df.to_html() |
|
|
|
|
|
|
|
latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.HTML("<h1 style='text-align: center;'>Compare Results of the π€ Open LLM Leaderboard</h1>") |
|
gr.HTML("<h3 style='text-align: center;'>Select 2 results to load and compare</h3>") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results") |
|
load_btn_1 = gr.Button("Load") |
|
dataframe_1 = gr.Dataframe(visible=False) |
|
with gr.Column(): |
|
model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results") |
|
load_btn_2 = gr.Button("Load") |
|
dataframe_2 = gr.Dataframe(visible=False) |
|
with gr.Row(): |
|
task = gr.Radio( |
|
["All"] + list(TASKS.values()), |
|
label="Tasks", |
|
info="Evaluation tasks to be displayed", |
|
value="All", |
|
) |
|
|
|
with gr.Row(): |
|
|
|
|
|
with gr.Tab("Results"): |
|
results = gr.HTML() |
|
with gr.Tab("Configs"): |
|
configs = gr.HTML() |
|
|
|
load_btn_1.click( |
|
fn=load_result_dataframe, |
|
inputs=model_id_1, |
|
outputs=dataframe_1, |
|
).then( |
|
fn=display_results, |
|
inputs=[dataframe_1, dataframe_2, task], |
|
outputs=[results, configs], |
|
) |
|
load_btn_2.click( |
|
fn=load_result_dataframe, |
|
inputs=model_id_2, |
|
outputs=dataframe_2, |
|
).then( |
|
fn=display_results, |
|
inputs=[dataframe_1, dataframe_2, task], |
|
outputs=[results, configs], |
|
) |
|
task.change( |
|
fn=display_results, |
|
inputs=[dataframe_1, dataframe_2, task], |
|
outputs=[results, configs], |
|
) |
|
|
|
demo.launch() |
|
|