File size: 9,348 Bytes
11767f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""

Preprocessing functions.

Functions to preprocess the data before running any method.

"""

import numpy as np
from scipy.sparse import csr_matrix, issparse
import pandas as pd
import logging
from anndata import AnnData
from numpy.random import default_rng


def check_mat(m, r, c, verbose=False):

    # Accept any sparse format but transform to csr
    if issparse(m) and not isinstance(m, csr_matrix):
        m = csr_matrix(m)

    # Check for empty features
    if type(m) is csr_matrix:
        msk_features = m.getnnz(axis=0) == 0
    else:
        msk_features = np.count_nonzero(m, axis=0) == 0
    n_empty_features = np.sum(msk_features)
    if n_empty_features > 0:
        if verbose:
            print("{0} features of mat are empty, they will be removed.".format(n_empty_features))
        c = c[~msk_features]
        m = m[:, ~msk_features]

    # Check for repeated features
    if np.any(c[1:] == c[:-1]):
        raise ValueError("""mat contains repeated feature names, please make them unique.""")

    # Check for empty samples
    if type(m) is csr_matrix:
        msk_samples = m.getnnz(axis=1) == 0
    else:
        msk_samples = np.count_nonzero(m, axis=1) == 0
    n_empty_samples = np.sum(msk_samples)
    if n_empty_samples > 0:
        if verbose:
            print("{0} samples of mat are empty, they will be removed.".format(n_empty_samples))
        r = r[~msk_samples]
        m = m[~msk_samples]

    # Check for non finite values
    if np.any(~np.isfinite(m.data)):
        raise ValueError("""mat contains non finite values (nan or inf), please set them to 0 or remove them.""")

    return m, r, c


def extract(mat, use_raw=True, verbose=False, dtype=np.float32):
    """

    Processes different input types so that they can be used downstream.



    Parameters

    ----------

    mat : list, pd.DataFrame or AnnData

        List of [matrix, samples, features], dataframe (samples x features) or an AnnData instance.

    use_raw : bool

        Use `raw` attribute of `adata` if present.

    dtype : type

        Type of float used.



    Returns

    -------

    m : csr_matrix

        Sparse matrix containing molecular readouts or statistics.

    r : ndarray

        Array of sample names.

    c : ndarray

        Array of feature names.

    """

    if type(mat) is list:
        m, r, c = mat
        m = np.array(m, dtype=dtype)
        r = np.array(r, dtype='U')
        c = np.array(c, dtype='U')
    elif type(mat) is pd.DataFrame:
        m = mat.values.astype(dtype)
        r = mat.index.values.astype('U')
        c = mat.columns.values.astype('U')
    elif type(mat) is AnnData:
        if use_raw:
            if mat.raw is None:
                raise ValueError("Received `use_raw=True`, but `mat.raw` is empty.")
            m = mat.raw.X.astype(dtype)
            c = mat.raw.var.index.values.astype('U')
        else:
            m = mat.X.astype(dtype)
            c = mat.var.index.values.astype('U')
        r = mat.obs.index.values.astype('U')

    else:
        raise ValueError("""mat must be a list of [matrix, samples, features], dataframe (samples x features) or an AnnData

        instance.""")

    # Check mat for empty or not finite values
    m, r, c = check_mat(m, r, c, verbose=verbose)

    # Sort genes
    msk = np.argsort(c)

    return m[:, msk].astype(dtype), r.astype('U'), c[msk].astype('U')


def filt_min_n(c, net, min_n=5):
    """

    Removes sources of a `net` with less than min_n targets.



    First it filters target features in `net` that are not in `mat` and then removes sources with less than `min_n` targets.



    Parameters

    ----------

    c : ndarray

        Column names of `mat`.

    net : DataFrame

        Network in long format.

    min_n : int

        Minimum of targets per source. If less, sources are removed.



    Returns

    -------

    net : DataFrame

        Filtered net in long format.

    """

    # Find shared targets between mat and net
    msk = np.isin(net['target'].values.astype('U'), c)
    net = net.iloc[msk]

    # Count unique sources
    sources, counts = np.unique(net['source'].values.astype('U'), return_counts=True)

    # Find sources with more than min_n targets
    msk = np.isin(net['source'].values.astype('U'), sources[counts >= min_n])

    # Filter
    net = net[msk]

    if net.shape[0] == 0:
        raise ValueError("""No sources with more than min_n={0} targets. Make sure mat and net have shared target features or

        reduce the number assigned to min_n""".format(min_n))

    return net


def match(c, r, net):
    """

    Matches `mat` with a regulatory adjacency matrix.



    Parameters

    ----------

    c : ndarray

        Column names of `mat`.

    r : ndarray

        Row  names of `net`.

    net : ndarray

        Regulatory adjacency matrix.



    Returns

    -------

    regX : ndarray

        Matching regulatory adjacency matrix.

    """

    # Init empty regX
    regX = np.zeros((c.shape[0], net.shape[1]), dtype=np.float32)

    # Create an index array for rows of c corresponding to r
    c_dict = {gene: i for i, gene in enumerate(c)}
    idxs = [c_dict[gene] for gene in r if gene in c_dict]

    # Populate regX using advanced indexing
    regX[idxs, :] = net[: len(idxs), :]

    return regX


def rename_net(net, source='source', target='target', weight='weight'):
    """

    Renames input network to match decoupler's format (source, target, weight).



    Parameters

    ----------

    net : DataFrame

        Network in long format.

    source : str

        Column name where to extract source features.

    target : str

        Column name where to extract target features.

    weight : str, None

        Column name where to extract features' weights. If no weights are available, set to None.



    Returns

    -------

    net : DataFrame

        Renamed network.

    """

    # Check if names are in columns
    msg = 'Column name "{0}" not found in net. Please specify a valid column.'
    assert source in net.columns, msg.format(source)
    assert target in net.columns, msg.format(target)
    if weight is not None:
        assert weight in net.columns, msg.format(weight) + """Alternatively, set to None if no weights are available."""
    else:
        net = net.copy()
        net['weight'] = 1.0
        weight = 'weight'

    # Rename
    net = net.rename(columns={source: 'source', target: 'target', weight: 'weight'})

    # Sort
    net = net.reindex(columns=['source', 'target', 'weight'])

    # Check if duplicated
    is_d = net.duplicated(['source', 'target']).sum()
    if is_d > 0:
        raise ValueError('net contains repeated edges, please remove them.')

    return net


def get_net_mat(net):
    """

    Transforms a given network to a regulatory adjacency matrix (targets x sources).



    Parameters

    ----------

    net : DataFrame

        Network in long format.



    Returns

    -------

    sources : ndarray

        Array of source names.

    targets : ndarray

        Array of target names.

    X : ndarray

        Array of interactions bewteen sources and targets (target x source).

    """

    # Pivot df to a wider format
    X = net.pivot(columns='source', index='target', values='weight')
    X[np.isnan(X)] = 0

    # Store node names and weights
    sources = X.columns.values
    targets = X.index.values
    X = X.values

    return sources.astype('U'), targets.astype('U'), X.astype(np.float32)


def mask_features(mat, log=False, thr=1, use_raw=False):
    if log:
        thr = np.exp(thr) - 1
    if type(mat) is list:
        m, r, c = mat
        m[m < thr] = 0.0
        return [m, r, c]
    elif type(mat) is pd.DataFrame:
        mat.loc[:, :] = np.where(mat.values < thr, 0.0, mat.values)
        return mat
    elif type(mat) is AnnData:
        if use_raw:
            if mat.raw is None:
                raise ValueError("Received `use_raw=True`, but `mat.raw` is empty.")
            mat.raw.X[mat.raw.X < thr] = 0.0
        else:
            mat.X[mat.X < thr] = 0.0
    else:
        raise ValueError("""mat must be a list of [matrix, samples, features], dataframe (samples x features) or an AnnData

        instance.""")


def add_to_anndata(mat, results):
    for result in results:
        if result is not None:
            mat.obsm[result.name] = result


def return_data(mat, results):
    if isinstance(mat, AnnData):
        if mat.obs_names.size != results[0].index.size:
            logging.warning('Provided AnnData contains empty observations. Returning repaired object.')
            mat = mat[results[0].index, :].copy()
            add_to_anndata(mat, results)
            return mat
        else:
            add_to_anndata(mat, results)
            return None
    else:
        return tuple([result for result in results if result is not None])


def break_ties(m, c, seed):
    # Randomize feature order to break ties randomly
    rng = default_rng(seed=seed)
    idx = np.arange(c.size)
    idx = rng.choice(idx, c.size, replace=False)
    m, c = m[:, idx], c[idx]
    return m, c