File size: 1,809 Bytes
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
 
97a05c0
 
dcd4560
 
0d593aa
 
 
97a05c0
dcd4560
 
 
 
 
97a05c0
 
 
0621bf5
97a05c0
 
 
 
 
 
0d593aa
0621bf5
97a05c0
 
 
 
dcd4560
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright (2024) Bytedance Ltd. and/or its affiliates

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from models.modeling_tarsier import TarsierForConditionalGeneration, LlavaConfig
# from dataset.processor import Processor
from dataset.tarsier_datamodule import init_processor
import torch
import base64
from tools.color import Color
import yaml
import os

HF_TOKEN = os.environ.get('HF_TOKEN', '')

def load_model_and_processor(model_name_or_path, data_config):
    print(Color.red(f"Load model and processor from: {model_name_or_path}"), flush=True)
    if isinstance(data_config, str):
        data_config = yaml.safe_load(open(data_config, 'r'))
    processor = init_processor(model_name_or_path, data_config)
    model_config = LlavaConfig.from_pretrained(
        model_name_or_path,
        trust_remote_code=True,
        token=HF_TOKEN,
    )
    model = TarsierForConditionalGeneration.from_pretrained(
        model_name_or_path,
        config=model_config,
        device_map='auto',
        torch_dtype=torch.float16,
        trust_remote_code=True,
        token=HF_TOKEN,
    )
    model.eval()
    return model, processor

def file_to_base64(img_path):
    with open(img_path, 'rb') as video_file:
        video_b64_str = base64.b64encode(video_file.read()).decode()
    return video_b64_str