Spaces:
Sleeping
Sleeping
Update compute_score.py
Browse files- compute_score.py +25 -3
compute_score.py
CHANGED
@@ -26,6 +26,25 @@ def normalize_answer(s):
|
|
26 |
|
27 |
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def f1_score(prediction, ground_truth):
|
31 |
prediction_tokens = normalize_answer(prediction).split()
|
@@ -53,7 +72,7 @@ def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
|
|
53 |
|
54 |
|
55 |
def compute_score(dataset, predictions):
|
56 |
-
f1 = exact_match = total = 0
|
57 |
for article in dataset:
|
58 |
for paragraph in article["paragraphs"]:
|
59 |
for qa in paragraph["qas"]:
|
@@ -66,11 +85,14 @@ def compute_score(dataset, predictions):
|
|
66 |
prediction = predictions[qa["id"]]
|
67 |
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
|
68 |
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
|
69 |
-
|
|
|
70 |
exact_match = 100.0 * exact_match / total
|
71 |
f1 = 100.0 * f1 / total
|
|
|
|
|
72 |
|
73 |
-
return {"exact_match": exact_match, "f1": f1}
|
74 |
|
75 |
|
76 |
if __name__ == "__main__":
|
|
|
26 |
|
27 |
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
28 |
|
29 |
+
def precision_score(prediction, ground_truth):
|
30 |
+
prediction_tokens = normalize_answer(prediction).split()
|
31 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
32 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
33 |
+
num_same = sum(common.values())
|
34 |
+
if num_same == 0:
|
35 |
+
return 0
|
36 |
+
precision = 1.0 * num_same / len(prediction_tokens)
|
37 |
+
return precision
|
38 |
+
|
39 |
+
def recall_score(prediction, ground_truth):
|
40 |
+
prediction_tokens = normalize_answer(prediction).split()
|
41 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
42 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
43 |
+
num_same = sum(common.values())
|
44 |
+
if num_same == 0:
|
45 |
+
return 0
|
46 |
+
recall = 1.0 * num_same / len(ground_truth_tokens)
|
47 |
+
return recall
|
48 |
|
49 |
def f1_score(prediction, ground_truth):
|
50 |
prediction_tokens = normalize_answer(prediction).split()
|
|
|
72 |
|
73 |
|
74 |
def compute_score(dataset, predictions):
|
75 |
+
precision = recall = f1 = exact_match = total = 0
|
76 |
for article in dataset:
|
77 |
for paragraph in article["paragraphs"]:
|
78 |
for qa in paragraph["qas"]:
|
|
|
85 |
prediction = predictions[qa["id"]]
|
86 |
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
|
87 |
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
|
88 |
+
precision += metric_max_over_ground_truths(precision_score, prediction, ground_truths)
|
89 |
+
recall += metric_max_over_ground_truths(recall_score, prediction, ground_truths)
|
90 |
exact_match = 100.0 * exact_match / total
|
91 |
f1 = 100.0 * f1 / total
|
92 |
+
recall = 100.0 * recall / total
|
93 |
+
precision = 100.0 * precision / total
|
94 |
|
95 |
+
return {"exact_match": exact_match, "f1": f1, "precision": precision , "recall": recall}
|
96 |
|
97 |
|
98 |
if __name__ == "__main__":
|