import streamlit as st from dotenv import load_dotenv, find_dotenv import os import time from langchain.chains import LLMChain from langchain_community.llms import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.memory import ChatMessageHistory, ConversationSummaryBufferMemory, ConversationBufferMemory, ConversationSummaryMemory from langchain.chains import LLMChain, ConversationChain # Please ensure you have a .env file available with 'HUGGINGFACEHUB_API_TOKEN' load_dotenv(find_dotenv()) HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] repo_id ="mistralai/Mistral-7B-Instruct-v0.2" def choose_model1(model): global repo_id if model == "Venilla Model": repo_id="mistralai/Mistral-7B-Instruct-v0.2" print("model chooosed from chat",repo_id) else: repo_id="GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2" print("model chooosed from chat",repo_id) query2 = " " def main(): llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=512, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN ) # template="""Act as a therapist, and conduct therapy sessions with the user. Your goal analyse their mental health # problem, based following input:{query}. Do not show your thought process, only output a single question. # Your output should contain consolation related to the query and a single question. Only ask one question at a time.""" # def ConvoLLM(query: str): # prompt_template=PromptTemplate(input_variables=['query'],template= template) # prompt_template.format(query= query) # chain=LLMChain(llm=llm,prompt=prompt_template) # response = chain.run(query) # return response #--------------------------------------------------------------------------------------------------------------------------------------- # memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=10) # memory.save_context({"input": "hi"}, {"output": "whats up"}) # def ConvoLLM(query: str): # conversation.predict(input=query) #--------------------------------------------------------------------------------------------------------------------------------------- # print(conversation.predict(input="I am feeling low")) # print(conversation.predict(input="I am alone at home")) # print(conversation.memory.buffer) global conversation,memory template = """ Act as an expert mental health therapist, and conduct therapy sessions with the user. You are an expert Mental Health therapist who is asking the user questions to learn what professional mental health well-being advice could help the user. Your goal is to analyse their mental health problem, based following input:{input}. You will always ask questions to the user to get them to explain more about whatever mental health condition is ailing them. DO NOT give the user any mental health advice or medical advice, ONLY ask for more information about their symptoms. Do not show your thought process, only output a single question. Your output should contain consolation related to the query and a single question. Only ask one question a time. Current conversation: {history} Human: {input} AI Assistant:""" PROMPT = PromptTemplate(input_variables=["history","input"], template=template) memory = ConversationBufferMemory(llm=llm) # memory.save_context({"input": "hi"}, {"output": "whats up"}) # memory.save_context({"input": "not much you"}, {"output": "not much"}) # memory.save_context({"input": "feeling sad"}, {"output": "I am happy you feel that way"}) conversation = ConversationChain( prompt=PROMPT, llm=llm, memory=memory, # verbose=True ) def convo(query): global conversation, memory, query2 response = conversation.predict(input=query) # memory.save_context({"input": query}, {"output": ""}) query2 = query2 + "," + query print("\n query2----------",query2) print("\n chat_agent.py----------",memory.chat_memory) summary = query2 return response, summary def delete_all_variables(): global query2 query2 = " " main() # main() # convo("I am feeling sad") # convo("I am feeling Lonely") # delete_all_variables() # convo("I am feeling hungry")