Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import pipeline
|
5 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
|
6 |
+
from diffusers.utils import load_image, make_image_grid
|
7 |
+
from PIL import Image
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
# Initialize the depth estimator
|
12 |
+
depth_estimator = pipeline("depth-estimation")
|
13 |
+
|
14 |
+
# Function to load an image from a URL
|
15 |
+
def load_image_from_url(url):
|
16 |
+
response = requests.get(url)
|
17 |
+
img = Image.open(BytesIO(response.content))
|
18 |
+
return img
|
19 |
+
|
20 |
+
# Function to get depth map
|
21 |
+
def get_depth_map(image, depth_estimator):
|
22 |
+
image = depth_estimator(image)["depth"]
|
23 |
+
image = np.array(image)
|
24 |
+
image = image[:, :, None]
|
25 |
+
image = np.concatenate([image, image, image], axis=2)
|
26 |
+
detected_map = torch.from_numpy(image).float() / 255.0
|
27 |
+
depth_map = detected_map.permute(2, 0, 1)
|
28 |
+
return depth_map
|
29 |
+
|
30 |
+
# Streamlit UI
|
31 |
+
st.title("Image Modification with ControlNet and Stable Diffusion")
|
32 |
+
|
33 |
+
# User inputs
|
34 |
+
image_url = st.text_input("Enter the URL of a farm image:", "")
|
35 |
+
prompt = st.text_input("Enter your prompt:", "vineyard agrotourism service on the farm")
|
36 |
+
|
37 |
+
if st.button("Generate"):
|
38 |
+
if image_url:
|
39 |
+
# Load the image
|
40 |
+
farm_image = load_image_from_url(image_url)
|
41 |
+
|
42 |
+
# Process image for depth map
|
43 |
+
depth_map = get_depth_map(farm_image, depth_estimator).unsqueeze(0).half().to("cuda")
|
44 |
+
|
45 |
+
# Load the ControlNet model and the StableDiffusionControlNetImg2ImgPipeline
|
46 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal", torch_dtype=torch.float16, use_safetensors=True)
|
47 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
48 |
+
"runwayml/stable-diffusion-v1-5",
|
49 |
+
controlnet=controlnet,
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
use_safetensors=True
|
52 |
+
).to("cuda")
|
53 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
54 |
+
pipe.enable_model_cpu_offload()
|
55 |
+
|
56 |
+
# Generate the image
|
57 |
+
output = pipe(
|
58 |
+
prompt,
|
59 |
+
image=farm_image,
|
60 |
+
control_image=depth_map,
|
61 |
+
).images[0]
|
62 |
+
|
63 |
+
# Convert PIL images to display in Streamlit
|
64 |
+
st.image(farm_image, caption="Original Image")
|
65 |
+
st.image(output, caption="Generated Image")
|
66 |
+
else:
|
67 |
+
st.write("Please enter an image URL.")
|