Spaces:
Runtime error
Runtime error
import pandas as pd | |
from rank_bm25 import BM25Okapi | |
import numpy as np | |
from transformers import AutoTokenizer | |
from rank_bm25 import BM25Okapi | |
import numpy as np | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
import pandas as pd | |
dataset = pd.read_csv("filtered_133k_data_cleanlab.csv") | |
df1 = dataset[['text' , 'label' , "Chat_ID" , "x" , "y"]].dropna() | |
df2 = dataset[["text", "classifier_label" , "Chat_ID" , "scores_proba_countvectr" , "x" , "y"]].dropna() | |
df2 = df2[df2.scores_proba_countvectr > 0.9] | |
df2 = df2[["text" , "classifier_label" , "Chat_ID" , "x" , "y"]] | |
df2.columns = ["text" , "label" , "Chat_ID" , "x" , "y"] | |
dataset = pd.concat( (df1 , df2) ).reset_index(drop=True) | |
dataset = dataset.sample(frac = 1).reset_index(drop=True) | |
class KeyWordSearch: | |
def __init__(self, corpus: pd.DataFrame, tokenizer = None): | |
""" | |
""" | |
self.corpus = corpus | |
self.tokenizer = tokenizer # if you want | |
self.tokenized_corpus = [doc.split(" ") for doc in self.corpus['text']] | |
self.search_engine = BM25Okapi(self.tokenized_corpus) | |
def get_top_10(self , query): | |
tokenized_query = query.split(" ") | |
scores = self.search_engine.get_scores(tokenized_query) | |
sorted_indices = np.argsort(scores) | |
top_indices = [] | |
for idx in reversed(sorted_indices): | |
top_indices.append(idx) | |
if len(top_indices) == 10: | |
break | |
top_results = [] | |
for top_index in top_indices: | |
top_results.append({ | |
"positive" : query, | |
"look_up": self.corpus['text'].iloc[top_index], | |
"score": scores[top_index], | |
}) | |
top_results = pd.DataFrame(top_results) | |
return dict(zip(top_results.look_up.tolist() , top_results.score.tolist())) | |
class VectorSearch: | |
def __init__(self, corpus): | |
""" | |
corpus : list of text | |
""" | |
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) | |
self.docs = self.text_splitter.create_documents(corpus) | |
modelPath = "omarelsayeed/bert_large_mnr" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': False} | |
self.embeddings = HuggingFaceEmbeddings( | |
model_name=modelPath, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
self.db = FAISS.from_documents(self.docs, self.embeddings) | |
self.retriever = self.db.as_retriever() | |
def search_query(self, query): | |
return (pd.DataFrame([[x.page_content, y] for x, y in self.db.similarity_search_with_score(query , k=10)]), | |
self.db.max_marginal_relevance_search(query , k=10 , return_score=True)) | |
import gradio as gr | |
import pandas as pd | |
df = pd.read_csv('filtered_133k_data_cleanlab.csv') | |
class CurrentLabel: | |
current_label = None | |
class VCC: | |
def __init__(self): | |
self.vcc = None | |
self.current_label = None | |
def filter_corpus(self, label, search_query, search_method): | |
corpus = df[df['label'] == label] | |
kw = KeyWordSearch(corpus) | |
# Implement your search functions (BM25 and Semantic) here and get the search results | |
search_results = "" | |
if search_method == "BM25": | |
return kw.get_top_10(search_query) | |
if search_method == "Semantic": | |
if CurrentLabel.current_label != label: | |
CurrentLabel.current_label = label | |
self.vcc = VectorSearch(corpus.text.tolist()) | |
results = self.vcc.db.similarity_search_with_score(search_query , k = 10) | |
results = [(x.page_content , y) for x, y in results] | |
res = [x[0] for x in results] | |
score = [x[1] for x in results] | |
sc = [float(x) for x in score] | |
return dict(zip(res , sc)) | |
# Format and return the search results as a string | |
if search_results == "": | |
search_results = "No results found." | |
return search_results | |
v = VCC() | |
# Create a Gradio interface | |
label_dropdown = gr.inputs.Dropdown(choices=list(df['label'].unique()), label="Select Label") | |
search_query_input = gr.inputs.Textbox(label="Search Query") | |
search_method_radio = gr.inputs.Radio(["BM25", "Semantic"], label="Search Method") | |
search_interface = gr.Interface( | |
fn=v.filter_corpus, | |
inputs=[label_dropdown, search_query_input, search_method_radio], | |
outputs=gr.outputs.Label(label="Search Results"), | |
title="Search and Filter Corpus" | |
) | |
search_interface.launch() |