Spaces:
Running
Running
File size: 3,795 Bytes
38723d6 76a4a39 c82f60f 76a4a39 66a6283 38723d6 76a4a39 38723d6 76a4a39 38723d6 76a4a39 38723d6 76a4a39 38723d6 548b0cf c82f60f 76a4a39 38723d6 c82f60f 76a4a39 c82f60f be16bab c82f60f be16bab c82f60f 76a4a39 c82f60f be16bab 76a4a39 c82f60f 970e0ea c82f60f 970e0ea c82f60f 970e0ea 38723d6 76a4a39 970e0ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import gradio as gr
import os
import requests
import json
import shutil
from huggingface_hub import HfApi, create_repo
from typing import Union
def download_file(digest, image):
url = f"https://registry.ollama.ai/v2/library/{image}/blobs/{digest}"
file_name = f"blobs/{digest}"
# Create the directory if it doesn't exist
os.makedirs(os.path.dirname(file_name), exist_ok=True)
# Download the file
print(f"Downloading {url} to {file_name}")
response = requests.get(url, allow_redirects=True)
if response.status_code == 200:
with open(file_name, 'wb') as f:
f.write(response.content)
else:
print(f"Failed to download {url}")
def fetch_manifest(image, tag):
manifest_url = f"https://registry.ollama.ai/v2/library/{image}/manifests/{tag}"
response = requests.get(manifest_url)
if response.status_code == 200:
return response.json()
else:
return None
def upload_to_huggingface(repo_id, folder_path, token):
api = HfApi(token=token)
repo_path = api.create_repo(repo_id=repo_id, repo_type="model", exist_ok=True)
print(f"Repo created {repo_path}")
try:
api.upload_folder(
folder_path=folder_path,
repo_id=repo_id,
repo_type="model",
)
return "Upload successful"
except Exception as e:
return f"Upload failed: {str(e)}"
def process_image_tag(image_tag, repo_id, oauth_token: Union[gr.OAuthToken, None]):
# Extract image and tag from the input
try:
token = oauth_token.token if oauth_token else None
image, tag = image_tag.split(':')
# Fetch the manifest JSON
manifest_json = fetch_manifest(image, tag)
if not manifest_json or 'errors' in manifest_json:
return f"Failed to fetch the manifest for {image}:{tag}"
# Save the manifest JSON to the blobs folder
manifest_file_path = "blobs/manifest.json"
os.makedirs(os.path.dirname(manifest_file_path), exist_ok=True)
with open(manifest_file_path, 'w') as f:
json.dump(manifest_json, f)
# Extract the digest values from the JSON
digests = [layer['digest'] for layer in manifest_json.get('layers', [])]
# Download each file
for digest in digests:
download_file(digest, image)
# Download the config file
config_digest = manifest_json.get('config', {}).get('digest')
if config_digest:
download_file(config_digest, image)
# Upload to Hugging Face Hub
upload_result = upload_to_huggingface(repo_id, 'blobs/*', token=token)
# Delete the blobs folder
shutil.rmtree('blobs')
return f"Successfully fetched and downloaded files for {image}:{tag}\n{upload_result}\nBlobs folder deleted"
except Exception as e:
shutil.rmtree('blobs', ignore_errors=True)
return f"Error found: {str(e)}"
css = """
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
"""
# Create the Gradio interface using gr.Blocks
with gr.Blocks(css=css) as demo:
gr.Markdown("# Ollama <> HF Hub 🤝")
gr.Markdown("Enter the image and tag to download the corresponding files from the Ollama registry and upload them to the Hugging Face Hub.")
gr.LoginButton()
image_tag_input = gr.Textbox(placeholder="Enter Ollama ID", label="Image and Tag")
repo_id_input = gr.Textbox(placeholder="Enter Hugging Face repo ID", label="Hugging Face Repo ID")
result_output = gr.Textbox(label="Result")
process_button = gr.Button("Process")
process_button.click(fn=process_image_tag, inputs=[image_tag_input, repo_id_input], outputs=result_output)
# Launch the Gradio app
demo.launch() |