"""k-diffusion transformer diffusion models, version 2. Codes adopted from https://github.com/crowsonkb/k-diffusion """ import math import torch import torch._dynamo from torch import nn from . import flags if flags.get_use_compile(): torch._dynamo.config.suppress_errors = True def rotate_half(x): x1, x2 = x[..., 0::2], x[..., 1::2] x = torch.stack((-x2, x1), dim=-1) *shape, d, r = x.shape return x.view(*shape, d * r) @flags.compile_wrap def apply_rotary_emb(freqs, t, start_index=0, scale=1.0): freqs = freqs.to(t) rot_dim = freqs.shape[-1] end_index = start_index + rot_dim assert rot_dim <= t.shape[-1], f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) return torch.cat((t_left, t, t_right), dim=-1) def centers(start, stop, num, dtype=None, device=None): edges = torch.linspace(start, stop, num + 1, dtype=dtype, device=device) return (edges[:-1] + edges[1:]) / 2 def make_grid(h_pos, w_pos): grid = torch.stack(torch.meshgrid(h_pos, w_pos, indexing='ij'), dim=-1) h, w, d = grid.shape return grid.view(h * w, d) def bounding_box(h, w, pixel_aspect_ratio=1.0): # Adjusted dimensions w_adj = w h_adj = h * pixel_aspect_ratio # Adjusted aspect ratio ar_adj = w_adj / h_adj # Determine bounding box based on the adjusted aspect ratio y_min, y_max, x_min, x_max = -1.0, 1.0, -1.0, 1.0 if ar_adj > 1: y_min, y_max = -1 / ar_adj, 1 / ar_adj elif ar_adj < 1: x_min, x_max = -ar_adj, ar_adj return y_min, y_max, x_min, x_max def make_axial_pos(h, w, pixel_aspect_ratio=1.0, align_corners=False, dtype=None, device=None): y_min, y_max, x_min, x_max = bounding_box(h, w, pixel_aspect_ratio) if align_corners: h_pos = torch.linspace(y_min, y_max, h, dtype=dtype, device=device) w_pos = torch.linspace(x_min, x_max, w, dtype=dtype, device=device) else: h_pos = centers(y_min, y_max, h, dtype=dtype, device=device) w_pos = centers(x_min, x_max, w, dtype=dtype, device=device) return make_grid(h_pos, w_pos) def freqs_pixel(max_freq=10.0): def init(shape): freqs = torch.linspace(1.0, max_freq / 2, shape[-1]) * math.pi return freqs.log().expand(shape) return init def freqs_pixel_log(max_freq=10.0): def init(shape): log_min = math.log(math.pi) log_max = math.log(max_freq * math.pi / 2) return torch.linspace(log_min, log_max, shape[-1]).expand(shape) return init class AxialRoPE(nn.Module): def __init__(self, dim, n_heads, start_index=0, freqs_init=freqs_pixel_log(max_freq=10.0)): super().__init__() self.n_heads = n_heads self.start_index = start_index log_freqs = freqs_init((n_heads, dim // 4)) self.freqs_h = nn.Parameter(log_freqs.clone()) self.freqs_w = nn.Parameter(log_freqs.clone()) def extra_repr(self): dim = (self.freqs_h.shape[-1] + self.freqs_w.shape[-1]) * 2 return f"dim={dim}, n_heads={self.n_heads}, start_index={self.start_index}" def get_freqs(self, pos): if pos.shape[-1] != 2: raise ValueError("input shape must be (..., 2)") freqs_h = pos[..., None, None, 0] * self.freqs_h.exp() freqs_w = pos[..., None, None, 1] * self.freqs_w.exp() freqs = torch.cat((freqs_h, freqs_w), dim=-1).repeat_interleave(2, dim=-1) return freqs.transpose(-2, -3) def forward(self, x, pos): freqs = self.get_freqs(pos) return apply_rotary_emb(freqs, x, self.start_index)