PMRF / arch /hourglass /image_transformer_v2.py
ohayonguy
first commit fixed
b7f3942
raw
history blame
28.1 kB
"""k-diffusion transformer diffusion models, version 2.
Codes adopted from https://github.com/crowsonkb/k-diffusion
"""
from dataclasses import dataclass
from functools import lru_cache, reduce
import math
from typing import Union
from einops import rearrange
import torch
from torch import nn
import torch._dynamo
from torch.nn import functional as F
from . import flags, flops
from .axial_rope import make_axial_pos
try:
import natten
except ImportError:
natten = None
try:
import flash_attn
except ImportError:
flash_attn = None
if flags.get_use_compile():
torch._dynamo.config.cache_size_limit = max(64, torch._dynamo.config.cache_size_limit)
torch._dynamo.config.suppress_errors = True
# Helpers
def zero_init(layer):
nn.init.zeros_(layer.weight)
if layer.bias is not None:
nn.init.zeros_(layer.bias)
return layer
def checkpoint(function, *args, **kwargs):
if flags.get_checkpointing():
kwargs.setdefault("use_reentrant", True)
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
else:
return function(*args, **kwargs)
def downscale_pos(pos):
pos = rearrange(pos, "... (h nh) (w nw) e -> ... h w (nh nw) e", nh=2, nw=2)
return torch.mean(pos, dim=-2)
# Param tags
def tag_param(param, tag):
if not hasattr(param, "_tags"):
param._tags = set([tag])
else:
param._tags.add(tag)
return param
def tag_module(module, tag):
for param in module.parameters():
tag_param(param, tag)
return module
def apply_wd(module):
for name, param in module.named_parameters():
if name.endswith("weight"):
tag_param(param, "wd")
return module
def filter_params(function, module):
for param in module.parameters():
tags = getattr(param, "_tags", set())
if function(tags):
yield param
# Kernels
@flags.compile_wrap
def linear_geglu(x, weight, bias=None):
x = x @ weight.mT
if bias is not None:
x = x + bias
x, gate = x.chunk(2, dim=-1)
return x * F.gelu(gate)
@flags.compile_wrap
def rms_norm(x, scale, eps):
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
return x * scale.to(x.dtype)
@flags.compile_wrap
def scale_for_cosine_sim(q, k, scale, eps):
dtype = reduce(torch.promote_types, (q.dtype, k.dtype, scale.dtype, torch.float32))
sum_sq_q = torch.sum(q.to(dtype)**2, dim=-1, keepdim=True)
sum_sq_k = torch.sum(k.to(dtype)**2, dim=-1, keepdim=True)
sqrt_scale = torch.sqrt(scale.to(dtype))
scale_q = sqrt_scale * torch.rsqrt(sum_sq_q + eps)
scale_k = sqrt_scale * torch.rsqrt(sum_sq_k + eps)
return q * scale_q.to(q.dtype), k * scale_k.to(k.dtype)
@flags.compile_wrap
def scale_for_cosine_sim_qkv(qkv, scale, eps):
q, k, v = qkv.unbind(2)
q, k = scale_for_cosine_sim(q, k, scale[:, None], eps)
return torch.stack((q, k, v), dim=2)
# Layers
class Linear(nn.Linear):
def forward(self, x):
flops.op(flops.op_linear, x.shape, self.weight.shape)
return super().forward(x)
class LinearGEGLU(nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super().__init__(in_features, out_features * 2, bias=bias)
self.out_features = out_features
def forward(self, x):
flops.op(flops.op_linear, x.shape, self.weight.shape)
return linear_geglu(x, self.weight, self.bias)
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.register_buffer('weight', torch.randn([out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
class RMSNorm(nn.Module):
def __init__(self, shape, eps=1e-6):
super().__init__()
self.eps = eps
self.scale = nn.Parameter(torch.ones(shape))
def extra_repr(self):
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
def forward(self, x):
return rms_norm(x, self.scale, self.eps)
class AdaRMSNorm(nn.Module):
def __init__(self, features, cond_features, eps=1e-6):
super().__init__()
self.eps = eps
self.linear = apply_wd(zero_init(Linear(cond_features, features, bias=False)))
tag_module(self.linear, "mapping")
def extra_repr(self):
return f"eps={self.eps},"
def forward(self, x, cond):
return rms_norm(x, self.linear(cond)[:, None, None, :] + 1, self.eps)
# Rotary position embeddings
@flags.compile_wrap
def apply_rotary_emb(x, theta, conj=False):
out_dtype = x.dtype
dtype = reduce(torch.promote_types, (x.dtype, theta.dtype, torch.float32))
d = theta.shape[-1]
assert d * 2 <= x.shape[-1]
x1, x2, x3 = x[..., :d], x[..., d : d * 2], x[..., d * 2 :]
x1, x2, theta = x1.to(dtype), x2.to(dtype), theta.to(dtype)
cos, sin = torch.cos(theta), torch.sin(theta)
sin = -sin if conj else sin
y1 = x1 * cos - x2 * sin
y2 = x2 * cos + x1 * sin
y1, y2 = y1.to(out_dtype), y2.to(out_dtype)
return torch.cat((y1, y2, x3), dim=-1)
@flags.compile_wrap
def _apply_rotary_emb_inplace(x, theta, conj):
dtype = reduce(torch.promote_types, (x.dtype, theta.dtype, torch.float32))
d = theta.shape[-1]
assert d * 2 <= x.shape[-1]
x1, x2 = x[..., :d], x[..., d : d * 2]
x1_, x2_, theta = x1.to(dtype), x2.to(dtype), theta.to(dtype)
cos, sin = torch.cos(theta), torch.sin(theta)
sin = -sin if conj else sin
y1 = x1_ * cos - x2_ * sin
y2 = x2_ * cos + x1_ * sin
x1.copy_(y1)
x2.copy_(y2)
class ApplyRotaryEmbeddingInplace(torch.autograd.Function):
@staticmethod
def forward(x, theta, conj):
_apply_rotary_emb_inplace(x, theta, conj=conj)
return x
@staticmethod
def setup_context(ctx, inputs, output):
_, theta, conj = inputs
ctx.save_for_backward(theta)
ctx.conj = conj
@staticmethod
def backward(ctx, grad_output):
theta, = ctx.saved_tensors
_apply_rotary_emb_inplace(grad_output, theta, conj=not ctx.conj)
return grad_output, None, None
def apply_rotary_emb_(x, theta):
return ApplyRotaryEmbeddingInplace.apply(x, theta, False)
class AxialRoPE(nn.Module):
def __init__(self, dim, n_heads):
super().__init__()
log_min = math.log(math.pi)
log_max = math.log(10.0 * math.pi)
freqs = torch.linspace(log_min, log_max, n_heads * dim // 4 + 1)[:-1].exp()
self.register_buffer("freqs", freqs.view(dim // 4, n_heads).T.contiguous())
def extra_repr(self):
return f"dim={self.freqs.shape[1] * 4}, n_heads={self.freqs.shape[0]}"
def forward(self, pos):
theta_h = pos[..., None, 0:1] * self.freqs.to(pos.dtype)
theta_w = pos[..., None, 1:2] * self.freqs.to(pos.dtype)
return torch.cat((theta_h, theta_w), dim=-1)
# Shifted window attention
def window(window_size, x):
*b, h, w, c = x.shape
x = torch.reshape(
x,
(*b, h // window_size, window_size, w // window_size, window_size, c),
)
x = torch.permute(
x,
(*range(len(b)), -5, -3, -4, -2, -1),
)
return x
def unwindow(x):
*b, h, w, wh, ww, c = x.shape
x = torch.permute(x, (*range(len(b)), -5, -3, -4, -2, -1))
x = torch.reshape(x, (*b, h * wh, w * ww, c))
return x
def shifted_window(window_size, window_shift, x):
x = torch.roll(x, shifts=(window_shift, window_shift), dims=(-2, -3))
windows = window(window_size, x)
return windows
def shifted_unwindow(window_shift, x):
x = unwindow(x)
x = torch.roll(x, shifts=(-window_shift, -window_shift), dims=(-2, -3))
return x
@lru_cache
def make_shifted_window_masks(n_h_w, n_w_w, w_h, w_w, shift, device=None):
ph_coords = torch.arange(n_h_w, device=device)
pw_coords = torch.arange(n_w_w, device=device)
h_coords = torch.arange(w_h, device=device)
w_coords = torch.arange(w_w, device=device)
patch_h, patch_w, q_h, q_w, k_h, k_w = torch.meshgrid(
ph_coords,
pw_coords,
h_coords,
w_coords,
h_coords,
w_coords,
indexing="ij",
)
is_top_patch = patch_h == 0
is_left_patch = patch_w == 0
q_above_shift = q_h < shift
k_above_shift = k_h < shift
q_left_of_shift = q_w < shift
k_left_of_shift = k_w < shift
m_corner = (
is_left_patch
& is_top_patch
& (q_left_of_shift == k_left_of_shift)
& (q_above_shift == k_above_shift)
)
m_left = is_left_patch & ~is_top_patch & (q_left_of_shift == k_left_of_shift)
m_top = ~is_left_patch & is_top_patch & (q_above_shift == k_above_shift)
m_rest = ~is_left_patch & ~is_top_patch
m = m_corner | m_left | m_top | m_rest
return m
def apply_window_attention(window_size, window_shift, q, k, v, scale=None):
# prep windows and masks
q_windows = shifted_window(window_size, window_shift, q)
k_windows = shifted_window(window_size, window_shift, k)
v_windows = shifted_window(window_size, window_shift, v)
b, heads, h, w, wh, ww, d_head = q_windows.shape
mask = make_shifted_window_masks(h, w, wh, ww, window_shift, device=q.device)
q_seqs = torch.reshape(q_windows, (b, heads, h, w, wh * ww, d_head))
k_seqs = torch.reshape(k_windows, (b, heads, h, w, wh * ww, d_head))
v_seqs = torch.reshape(v_windows, (b, heads, h, w, wh * ww, d_head))
mask = torch.reshape(mask, (h, w, wh * ww, wh * ww))
# do the attention here
flops.op(flops.op_attention, q_seqs.shape, k_seqs.shape, v_seqs.shape)
qkv = F.scaled_dot_product_attention(q_seqs, k_seqs, v_seqs, mask, scale=scale)
# unwindow
qkv = torch.reshape(qkv, (b, heads, h, w, wh, ww, d_head))
return shifted_unwindow(window_shift, qkv)
# Transformer layers
def use_flash_2(x):
if not flags.get_use_flash_attention_2():
return False
if flash_attn is None:
return False
if x.device.type != "cuda":
return False
if x.dtype not in (torch.float16, torch.bfloat16):
return False
return True
class SelfAttentionBlock(nn.Module):
def __init__(self, d_model, d_head, cond_features, dropout=0.0):
super().__init__()
self.d_head = d_head
self.n_heads = d_model // d_head
self.norm = AdaRMSNorm(d_model, cond_features)
self.qkv_proj = apply_wd(Linear(d_model, d_model * 3, bias=False))
self.scale = nn.Parameter(torch.full([self.n_heads], 10.0))
self.pos_emb = AxialRoPE(d_head // 2, self.n_heads)
self.dropout = nn.Dropout(dropout)
self.out_proj = apply_wd(zero_init(Linear(d_model, d_model, bias=False)))
def extra_repr(self):
return f"d_head={self.d_head},"
def forward(self, x, pos, cond):
skip = x
x = self.norm(x, cond)
qkv = self.qkv_proj(x)
pos = rearrange(pos, "... h w e -> ... (h w) e").to(qkv.dtype)
theta = self.pos_emb(pos)
if use_flash_2(qkv):
qkv = rearrange(qkv, "n h w (t nh e) -> n (h w) t nh e", t=3, e=self.d_head)
qkv = scale_for_cosine_sim_qkv(qkv, self.scale, 1e-6)
theta = torch.stack((theta, theta, torch.zeros_like(theta)), dim=-3)
qkv = apply_rotary_emb_(qkv, theta)
flops_shape = qkv.shape[-5], qkv.shape[-2], qkv.shape[-4], qkv.shape[-1]
flops.op(flops.op_attention, flops_shape, flops_shape, flops_shape)
x = flash_attn.flash_attn_qkvpacked_func(qkv, softmax_scale=1.0)
x = rearrange(x, "n (h w) nh e -> n h w (nh e)", h=skip.shape[-3], w=skip.shape[-2])
else:
q, k, v = rearrange(qkv, "n h w (t nh e) -> t n nh (h w) e", t=3, e=self.d_head)
q, k = scale_for_cosine_sim(q, k, self.scale[:, None, None], 1e-6)
theta = theta.movedim(-2, -3)
q = apply_rotary_emb_(q, theta)
k = apply_rotary_emb_(k, theta)
flops.op(flops.op_attention, q.shape, k.shape, v.shape)
x = F.scaled_dot_product_attention(q, k, v, scale=1.0)
x = rearrange(x, "n nh (h w) e -> n h w (nh e)", h=skip.shape[-3], w=skip.shape[-2])
x = self.dropout(x)
x = self.out_proj(x)
return x + skip
class NeighborhoodSelfAttentionBlock(nn.Module):
def __init__(self, d_model, d_head, cond_features, kernel_size, dropout=0.0):
super().__init__()
self.d_head = d_head
self.n_heads = d_model // d_head
self.kernel_size = kernel_size
self.norm = AdaRMSNorm(d_model, cond_features)
self.qkv_proj = apply_wd(Linear(d_model, d_model * 3, bias=False))
self.scale = nn.Parameter(torch.full([self.n_heads], 10.0))
self.pos_emb = AxialRoPE(d_head // 2, self.n_heads)
self.dropout = nn.Dropout(dropout)
self.out_proj = apply_wd(zero_init(Linear(d_model, d_model, bias=False)))
def extra_repr(self):
return f"d_head={self.d_head}, kernel_size={self.kernel_size}"
def forward(self, x, pos, cond):
skip = x
x = self.norm(x, cond)
qkv = self.qkv_proj(x)
if natten is None:
raise ModuleNotFoundError("natten is required for neighborhood attention")
if natten.has_fused_na():
q, k, v = rearrange(qkv, "n h w (t nh e) -> t n h w nh e", t=3, e=self.d_head)
q, k = scale_for_cosine_sim(q, k, self.scale[:, None], 1e-6)
theta = self.pos_emb(pos)
q = apply_rotary_emb_(q, theta)
k = apply_rotary_emb_(k, theta)
flops.op(flops.op_natten, q.shape, k.shape, v.shape, self.kernel_size)
x = natten.functional.na2d(q, k, v, self.kernel_size, scale=1.0)
x = rearrange(x, "n h w nh e -> n h w (nh e)")
else:
q, k, v = rearrange(qkv, "n h w (t nh e) -> t n nh h w e", t=3, e=self.d_head)
q, k = scale_for_cosine_sim(q, k, self.scale[:, None, None, None], 1e-6)
theta = self.pos_emb(pos).movedim(-2, -4)
q = apply_rotary_emb_(q, theta)
k = apply_rotary_emb_(k, theta)
flops.op(flops.op_natten, q.shape, k.shape, v.shape, self.kernel_size)
qk = natten.functional.na2d_qk(q, k, self.kernel_size)
a = torch.softmax(qk, dim=-1).to(v.dtype)
x = natten.functional.na2d_av(a, v, self.kernel_size)
x = rearrange(x, "n nh h w e -> n h w (nh e)")
x = self.dropout(x)
x = self.out_proj(x)
return x + skip
class ShiftedWindowSelfAttentionBlock(nn.Module):
def __init__(self, d_model, d_head, cond_features, window_size, window_shift, dropout=0.0):
super().__init__()
self.d_head = d_head
self.n_heads = d_model // d_head
self.window_size = window_size
self.window_shift = window_shift
self.norm = AdaRMSNorm(d_model, cond_features)
self.qkv_proj = apply_wd(Linear(d_model, d_model * 3, bias=False))
self.scale = nn.Parameter(torch.full([self.n_heads], 10.0))
self.pos_emb = AxialRoPE(d_head // 2, self.n_heads)
self.dropout = nn.Dropout(dropout)
self.out_proj = apply_wd(zero_init(Linear(d_model, d_model, bias=False)))
def extra_repr(self):
return f"d_head={self.d_head}, window_size={self.window_size}, window_shift={self.window_shift}"
def forward(self, x, pos, cond):
skip = x
x = self.norm(x, cond)
qkv = self.qkv_proj(x)
q, k, v = rearrange(qkv, "n h w (t nh e) -> t n nh h w e", t=3, e=self.d_head)
q, k = scale_for_cosine_sim(q, k, self.scale[:, None, None, None], 1e-6)
theta = self.pos_emb(pos).movedim(-2, -4)
q = apply_rotary_emb_(q, theta)
k = apply_rotary_emb_(k, theta)
x = apply_window_attention(self.window_size, self.window_shift, q, k, v, scale=1.0)
x = rearrange(x, "n nh h w e -> n h w (nh e)")
x = self.dropout(x)
x = self.out_proj(x)
return x + skip
class FeedForwardBlock(nn.Module):
def __init__(self, d_model, d_ff, cond_features, dropout=0.0):
super().__init__()
self.norm = AdaRMSNorm(d_model, cond_features)
self.up_proj = apply_wd(LinearGEGLU(d_model, d_ff, bias=False))
self.dropout = nn.Dropout(dropout)
self.down_proj = apply_wd(zero_init(Linear(d_ff, d_model, bias=False)))
def forward(self, x, cond):
skip = x
x = self.norm(x, cond)
x = self.up_proj(x)
x = self.dropout(x)
x = self.down_proj(x)
return x + skip
class GlobalTransformerLayer(nn.Module):
def __init__(self, d_model, d_ff, d_head, cond_features, dropout=0.0):
super().__init__()
self.self_attn = SelfAttentionBlock(d_model, d_head, cond_features, dropout=dropout)
self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)
def forward(self, x, pos, cond):
x = checkpoint(self.self_attn, x, pos, cond)
x = checkpoint(self.ff, x, cond)
return x
class NeighborhoodTransformerLayer(nn.Module):
def __init__(self, d_model, d_ff, d_head, cond_features, kernel_size, dropout=0.0):
super().__init__()
self.self_attn = NeighborhoodSelfAttentionBlock(d_model, d_head, cond_features, kernel_size, dropout=dropout)
self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)
def forward(self, x, pos, cond):
x = checkpoint(self.self_attn, x, pos, cond)
x = checkpoint(self.ff, x, cond)
return x
class ShiftedWindowTransformerLayer(nn.Module):
def __init__(self, d_model, d_ff, d_head, cond_features, window_size, index, dropout=0.0):
super().__init__()
window_shift = window_size // 2 if index % 2 == 1 else 0
self.self_attn = ShiftedWindowSelfAttentionBlock(d_model, d_head, cond_features, window_size, window_shift, dropout=dropout)
self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)
def forward(self, x, pos, cond):
x = checkpoint(self.self_attn, x, pos, cond)
x = checkpoint(self.ff, x, cond)
return x
class NoAttentionTransformerLayer(nn.Module):
def __init__(self, d_model, d_ff, cond_features, dropout=0.0):
super().__init__()
self.ff = FeedForwardBlock(d_model, d_ff, cond_features, dropout=dropout)
def forward(self, x, pos, cond):
x = checkpoint(self.ff, x, cond)
return x
class Level(nn.ModuleList):
def forward(self, x, *args, **kwargs):
for layer in self:
x = layer(x, *args, **kwargs)
return x
# Mapping network
class MappingFeedForwardBlock(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.0):
super().__init__()
self.norm = RMSNorm(d_model)
self.up_proj = apply_wd(LinearGEGLU(d_model, d_ff, bias=False))
self.dropout = nn.Dropout(dropout)
self.down_proj = apply_wd(zero_init(Linear(d_ff, d_model, bias=False)))
def forward(self, x):
skip = x
x = self.norm(x)
x = self.up_proj(x)
x = self.dropout(x)
x = self.down_proj(x)
return x + skip
class MappingNetwork(nn.Module):
def __init__(self, n_layers, d_model, d_ff, dropout=0.0):
super().__init__()
self.in_norm = RMSNorm(d_model)
self.blocks = nn.ModuleList([MappingFeedForwardBlock(d_model, d_ff, dropout=dropout) for _ in range(n_layers)])
self.out_norm = RMSNorm(d_model)
def forward(self, x):
x = self.in_norm(x)
for block in self.blocks:
x = block(x)
x = self.out_norm(x)
return x
# Token merging and splitting
class TokenMerge(nn.Module):
def __init__(self, in_features, out_features, patch_size=(2, 2)):
super().__init__()
self.h = patch_size[0]
self.w = patch_size[1]
self.proj = apply_wd(Linear(in_features * self.h * self.w, out_features, bias=False))
def forward(self, x):
x = rearrange(x, "... (h nh) (w nw) e -> ... h w (nh nw e)", nh=self.h, nw=self.w)
return self.proj(x)
class TokenSplitWithoutSkip(nn.Module):
def __init__(self, in_features, out_features, patch_size=(2, 2)):
super().__init__()
self.h = patch_size[0]
self.w = patch_size[1]
self.proj = apply_wd(Linear(in_features, out_features * self.h * self.w, bias=False))
def forward(self, x):
x = self.proj(x)
return rearrange(x, "... h w (nh nw e) -> ... (h nh) (w nw) e", nh=self.h, nw=self.w)
class TokenSplit(nn.Module):
def __init__(self, in_features, out_features, patch_size=(2, 2)):
super().__init__()
self.h = patch_size[0]
self.w = patch_size[1]
self.proj = apply_wd(Linear(in_features, out_features * self.h * self.w, bias=False))
self.fac = nn.Parameter(torch.ones(1) * 0.5)
def forward(self, x, skip):
x = self.proj(x)
x = rearrange(x, "... h w (nh nw e) -> ... (h nh) (w nw) e", nh=self.h, nw=self.w)
return torch.lerp(skip, x, self.fac.to(x.dtype))
# Configuration
@dataclass
class GlobalAttentionSpec:
d_head: int
@dataclass
class NeighborhoodAttentionSpec:
d_head: int
kernel_size: int
@dataclass
class ShiftedWindowAttentionSpec:
d_head: int
window_size: int
@dataclass
class NoAttentionSpec:
pass
@dataclass
class LevelSpec:
depth: int
width: int
d_ff: int
self_attn: Union[GlobalAttentionSpec, NeighborhoodAttentionSpec, ShiftedWindowAttentionSpec, NoAttentionSpec]
dropout: float
@dataclass
class MappingSpec:
depth: int
width: int
d_ff: int
dropout: float
# Model class
class ImageTransformerDenoiserModelV2(nn.Module):
def __init__(self, levels, mapping, in_channels, out_channels, patch_size, num_classes=0, mapping_cond_dim=0, degradation_params_dim=None):
super().__init__()
self.num_classes = num_classes
self.patch_in = TokenMerge(in_channels, levels[0].width, patch_size)
self.mapping_width = mapping.width
self.time_emb = FourierFeatures(1, mapping.width)
self.time_in_proj = Linear(mapping.width, mapping.width, bias=False)
self.aug_emb = FourierFeatures(9, mapping.width)
self.aug_in_proj = Linear(mapping.width, mapping.width, bias=False)
self.degradation_proj = Linear(degradation_params_dim, mapping.width, bias=False) if degradation_params_dim else None
self.class_emb = nn.Embedding(num_classes, mapping.width) if num_classes else None
self.mapping_cond_in_proj = Linear(mapping_cond_dim, mapping.width, bias=False) if mapping_cond_dim else None
self.mapping = tag_module(MappingNetwork(mapping.depth, mapping.width, mapping.d_ff, dropout=mapping.dropout), "mapping")
self.down_levels, self.up_levels = nn.ModuleList(), nn.ModuleList()
for i, spec in enumerate(levels):
if isinstance(spec.self_attn, GlobalAttentionSpec):
layer_factory = lambda _: GlobalTransformerLayer(spec.width, spec.d_ff, spec.self_attn.d_head, mapping.width, dropout=spec.dropout)
elif isinstance(spec.self_attn, NeighborhoodAttentionSpec):
layer_factory = lambda _: NeighborhoodTransformerLayer(spec.width, spec.d_ff, spec.self_attn.d_head, mapping.width, spec.self_attn.kernel_size, dropout=spec.dropout)
elif isinstance(spec.self_attn, ShiftedWindowAttentionSpec):
layer_factory = lambda i: ShiftedWindowTransformerLayer(spec.width, spec.d_ff, spec.self_attn.d_head, mapping.width, spec.self_attn.window_size, i, dropout=spec.dropout)
elif isinstance(spec.self_attn, NoAttentionSpec):
layer_factory = lambda _: NoAttentionTransformerLayer(spec.width, spec.d_ff, mapping.width, dropout=spec.dropout)
else:
raise ValueError(f"unsupported self attention spec {spec.self_attn}")
if i < len(levels) - 1:
self.down_levels.append(Level([layer_factory(i) for i in range(spec.depth)]))
self.up_levels.append(Level([layer_factory(i + spec.depth) for i in range(spec.depth)]))
else:
self.mid_level = Level([layer_factory(i) for i in range(spec.depth)])
self.merges = nn.ModuleList([TokenMerge(spec_1.width, spec_2.width) for spec_1, spec_2 in zip(levels[:-1], levels[1:])])
self.splits = nn.ModuleList([TokenSplit(spec_2.width, spec_1.width) for spec_1, spec_2 in zip(levels[:-1], levels[1:])])
self.out_norm = RMSNorm(levels[0].width)
self.patch_out = TokenSplitWithoutSkip(levels[0].width, out_channels, patch_size)
nn.init.zeros_(self.patch_out.proj.weight)
def param_groups(self, base_lr=5e-4, mapping_lr_scale=1 / 3):
wd = filter_params(lambda tags: "wd" in tags and "mapping" not in tags, self)
no_wd = filter_params(lambda tags: "wd" not in tags and "mapping" not in tags, self)
mapping_wd = filter_params(lambda tags: "wd" in tags and "mapping" in tags, self)
mapping_no_wd = filter_params(lambda tags: "wd" not in tags and "mapping" in tags, self)
groups = [
{"params": list(wd), "lr": base_lr},
{"params": list(no_wd), "lr": base_lr, "weight_decay": 0.0},
{"params": list(mapping_wd), "lr": base_lr * mapping_lr_scale},
{"params": list(mapping_no_wd), "lr": base_lr * mapping_lr_scale, "weight_decay": 0.0}
]
return groups
def forward(self, x, sigma=None, aug_cond=None, class_cond=None, mapping_cond=None, degradation_params=None):
# Patching
x = x.movedim(-3, -1)
x = self.patch_in(x)
# TODO: pixel aspect ratio for nonsquare patches
pos = make_axial_pos(x.shape[-3], x.shape[-2], device=x.device).view(x.shape[-3], x.shape[-2], 2)
# Mapping network
if class_cond is None and self.class_emb is not None:
raise ValueError("class_cond must be specified if num_classes > 0")
if mapping_cond is None and self.mapping_cond_in_proj is not None:
raise ValueError("mapping_cond must be specified if mapping_cond_dim > 0")
# c_noise = torch.log(sigma) / 4
# c_noise = (sigma * 2.0 - 1.0)
# c_noise = sigma * 2 - 1
if sigma is not None:
time_emb = self.time_in_proj(self.time_emb(sigma[..., None]))
else:
time_emb = self.time_in_proj(torch.ones(1, 1, device=x.device, dtype=x.dtype).expand(x.shape[0], self.mapping_width))
# time_emb = self.time_in_proj(sigma[..., None])
aug_cond = x.new_zeros([x.shape[0], 9]) if aug_cond is None else aug_cond
aug_emb = self.aug_in_proj(self.aug_emb(aug_cond))
class_emb = self.class_emb(class_cond) if self.class_emb is not None else 0
mapping_emb = self.mapping_cond_in_proj(mapping_cond) if self.mapping_cond_in_proj is not None else 0
degradation_emb = self.degradation_proj(degradation_params) if degradation_params is not None else 0
cond = self.mapping(time_emb + aug_emb + class_emb + mapping_emb + degradation_emb)
# Hourglass transformer
skips, poses = [], []
for down_level, merge in zip(self.down_levels, self.merges):
x = down_level(x, pos, cond)
skips.append(x)
poses.append(pos)
x = merge(x)
pos = downscale_pos(pos)
x = self.mid_level(x, pos, cond)
for up_level, split, skip, pos in reversed(list(zip(self.up_levels, self.splits, skips, poses))):
x = split(x, skip)
x = up_level(x, pos, cond)
# Unpatching
x = self.out_norm(x)
x = self.patch_out(x)
x = x.movedim(-1, -3)
return x