video-object-remover / FGT_codes /LAFC /data /train_dataset_edge.py
oguzakif's picture
init repo
d4b77ac
import random
import pickle
import logging
import torch
import cv2
import os
from torch.utils.data.dataset import Dataset
import numpy as np
from skimage.feature import canny
from .util.STTN_mask import create_random_shape_with_random_motion
from cvbase import read_flow, flow2rgb
from .util.flow_utils import region_fill as rf
import imageio
logger = logging.getLogger('base')
class VideoBasedDataset(Dataset):
def __init__(self, opt, dataInfo):
self.opt = opt
self.mode = opt['mode']
self.sampleMethod = opt['sample']
self.dataInfo = dataInfo
self.flow_height, self.flow_width = dataInfo['flow']['flow_height'], dataInfo['flow']['flow_width']
self.data_path = dataInfo['flow_path']
self.frame_path = dataInfo['frame_path']
self.train_list = os.listdir(self.data_path)
self.name2length = self.dataInfo['name2len']
self.require_edge = opt['use_edges']
self.sigma = dataInfo['edge']['sigma']
self.low_threshold = dataInfo['edge']['low_threshold']
self.high_threshold = dataInfo['edge']['high_threshold']
with open(self.name2length, 'rb') as f:
self.name2len = pickle.load(f)
self.norm = opt['norm']
self.sequenceLen = self.opt['num_flows']
self.flow_interval = self.opt['flow_interval']
self.halfLen = self.sequenceLen // 2
def __len__(self):
return len(self.train_list)
def __getitem__(self, idx):
try:
item = self.load_item(idx)
except:
print('Loading error: ' + self.train_list[idx])
item = self.load_item(0)
return item
def frameSample(self, flowLen):
if self.sampleMethod == 'random':
indices = [i for i in range(flowLen)]
sampledIndices = random.sample(indices, self.sequenceLen)
else:
sampledIndices = []
pivot = random.randint(0, flowLen - 1)
for i in range(-self.halfLen, self.halfLen + 1):
index = pivot + i * self.flow_interval
if index < 0:
index = 0
if index >= flowLen:
index = flowLen - 1
sampledIndices.append(index)
return sampledIndices
def load_item(self, idx):
info = {}
video = self.train_list[idx]
info['name'] = video
if np.random.uniform(0, 1) > 0.5:
direction = 'forward_flo'
else:
direction = 'backward_flo'
flow_dir = os.path.join(self.data_path, video, direction)
frame_dir = os.path.join(self.frame_path, video)
flowLen = self.name2len[video] - 1
assert flowLen > self.sequenceLen, 'Flow length {} is not enough'.format(flowLen)
sampledIndices = self.frameSample(flowLen)
candidateMasks = create_random_shape_with_random_motion(self.sequenceLen, 0.9, 1.1, 1,
10)
flows, diffused_flows, masks = [], [], []
current_frames, shift_frames = None, None
mask_counter = 0
for i in sampledIndices:
flow = read_flow(os.path.join(flow_dir, '{:05d}.flo'.format(i)))
mask = self.read_mask(candidateMasks[mask_counter], self.flow_height, self.flow_width)
mask_counter += 1
flow = self.flow_tf(flow, self.flow_height, self.flow_width)
diffused_flow = self.diffusion_fill(flow, mask)
flows.append(flow)
masks.append(mask)
diffused_flows.append(diffused_flow)
targetIndex = sampledIndices[self.sequenceLen // 2]
current_frames, shift_frames = self.read_frames(frame_dir, targetIndex, direction, self.flow_width,
self.flow_height)
flow_gray, edge = self.load_edge(flows[self.halfLen])
inputs = {'flows': flows, 'diffused_flows': diffused_flows, 'current_frame': current_frames,
'shift_frame': shift_frames, 'edges': edge, 'masks': masks, 'flow_gray': flow_gray}
return self.to_tensor(inputs)
def read_frames(self, frame_dir, index, direction, width, height):
if direction == 'forward_flo':
current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
else:
current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
current_frame = imageio.imread(current_frame)
shift_frame = imageio.imread(shift_frame)
current_frame = cv2.resize(current_frame, (width, height), cv2.INTER_LINEAR)
shift_frame = cv2.resize(shift_frame, (width, height), cv2.INTER_LINEAR)
current_frame = current_frame / 255.
shift_frame = shift_frame / 255.
return current_frame, shift_frame
def diffusion_fill(self, flow, mask):
flow_filled = np.zeros(flow.shape)
flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask)
flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask)
return flow_filled
def flow_tf(self, flow, height, width):
flow_shape = flow.shape
flow_resized = cv2.resize(flow, (width, height), cv2.INTER_LINEAR)
flow_resized[:, :, 0] *= (float(width) / float(flow_shape[1]))
flow_resized[:, :, 1] *= (float(height) / float(flow_shape[0]))
return flow_resized
def read_mask(self, mask, height, width):
mask = np.array(mask)
mask = mask / 255.
raw_mask = (mask > 0.5).astype(np.uint8)
raw_mask = cv2.resize(raw_mask, dsize=(width, height), interpolation=cv2.INTER_NEAREST)
return raw_mask
def load_edge(self, flow):
gray_flow = (flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2) ** 0.5
factor = gray_flow.max()
gray_flow = gray_flow / factor
flow_rgb = flow2rgb(flow)
flow_gray = cv2.cvtColor(flow_rgb, cv2.COLOR_RGB2GRAY)
return gray_flow, canny(flow_gray, sigma=self.sigma, mask=None, low_threshold=self.low_threshold,
high_threshold=self.high_threshold).astype(np.float)
def to_tensor(self, data_list):
"""
Args:
data_list: a numpy.array list
Returns: a torch.tensor list with the None entries removed
"""
keys = list(data_list.keys())
for key in keys:
if data_list[key] is None or data_list[key] == []:
data_list.pop(key)
else:
item = data_list[key]
if not isinstance(item, list):
if len(item.shape) == 2:
item = item[:, :, np.newaxis]
item = torch.from_numpy(np.transpose(item, (2, 0, 1))).float()
else:
item = np.stack(item, axis=0)
if len(item.shape) == 3:
item = item[:, :, :, np.newaxis]
item = torch.from_numpy(np.transpose(item, (3, 0, 1, 2))).float()
data_list[key] = item
return data_list