Spaces:
Runtime error
Runtime error
File size: 11,291 Bytes
bbe9860 30dce9f bbe9860 18665b8 bbe9860 02ecb0f bbe9860 14df537 bbe9860 14df537 bbe9860 18665b8 bbe9860 c47a1d0 bbe9860 02ecb0f bbe9860 14df537 02ecb0f bbe9860 02ecb0f bbe9860 02ecb0f bbe9860 14df537 bbe9860 14df537 bbe9860 30dce9f bbe9860 30dce9f bbe9860 30dce9f bbe9860 02ecb0f bbe9860 02ecb0f bbe9860 02ecb0f bbe9860 02ecb0f bbe9860 30dce9f bbe9860 02ecb0f bbe9860 8d3d7c4 bbe9860 14df537 bbe9860 30dce9f bbe9860 14df537 30dce9f 14df537 bbe9860 02ecb0f 30dce9f 2d178ec 02ecb0f 14df537 bbe9860 02ecb0f 30dce9f 14df537 30dce9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import copy
import streamlit as st
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from sentence_transformers.cross_encoder import CrossEncoder
from st_aggrid import GridOptionsBuilder, AgGrid
import pickle
import torch
from transformers import AutoTokenizer, AutoModel
from pathlib import Path
import base64
import io
st.set_page_config(layout="wide")
DATAFRAME_FILE_ORIGINAL = 'policyQA_original.csv'
DATAFRAME_FILE_BSBS = 'basecamp.csv'
selectbox_selections = {
'Retrieve - Rerank (with fine-tuned cross-encoder)': 1,
'Dense Passage Retrieval':2,
# 'Base Dense Passage Retrieval': 3,
'Retrieve - Rerank':4
}
imagebox_selections = {
'Retrieve - Rerank (with fine-tuned cross-encoder)': 'Retrieve-rerank-trained-cross-encoder.png',
'Dense Passage Retrieval': 'DPR_pipeline.png',
'Base Dense Passage Retrieval': 'base-dpr.png',
'Retrieve - Rerank': 'retrieve-rerank.png'
}
def retrieve_rerank(question):
# Semantic Search (Retrieve)
question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
hits = util.semantic_search(question_embedding, context_embeddings, top_k=100)
if len(hits) == 0:
return []
hits = hits[0]
# Rerank - score all retrieved passages with cross-encoder
cross_inp = [[question, contexes[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-5 hits from re-ranker
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
top_5_contexes = []
top_5_scores = []
for hit in hits[0:20]:
top_5_contexes.append(contexes[hit['corpus_id']])
top_5_scores.append(hit['cross-score'])
return top_5_contexes, top_5_scores
class CPU_Unpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'torch.storage' and name == '_load_from_bytes':
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
else: return super().find_class(module, name)
@st.cache(show_spinner=False, allow_output_mutation=True)
def load_paragraphs(path):
with open(path, "rb") as fIn:
cache_data = CPU_Unpickler(fIn).load()
corpus_sentences = cache_data['contexes']
corpus_embeddings = cache_data['embeddings']
return corpus_embeddings, corpus_sentences
@st.cache(show_spinner=False)
def load_dataframes():
# data_original = pd.read_csv(DATAFRAME_FILE_ORIGINAL, index_col=0, sep='|')
data_bsbs = pd.read_csv(DATAFRAME_FILE_BSBS, index_col=0, sep='|')
data_bsbs.drop(['context_id', 'answer', 'answer_start', 'answer_end'], axis=1, inplace=True)
# data_original = data_original.sample(frac=1).reset_index(drop=True)
data_bsbs = data_bsbs.sample(frac=1).reset_index(drop=True)
return data_bsbs
def dot_product(question_output, context_output):
mat1 = torch.squeeze(question_output, 0)
mat2 = torch.squeeze(context_output, 0)
result = torch.dot(mat1, mat2)
return result
def base_dpr_pipeline(question):
tokenized_question = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt")
question_embedding = base_dpr_context_encoder(**tokenized_question)
question_embedding = mean_pooling(question_embedding[0], tokenized_question['attention_mask'])
# question_embedding = question_embedding['pooler_output']
results_list = []
for i, context_embedding in enumerate(base_dpr_context_embeddings):
score = dot_product(question_embedding, context_embedding)
results_list.append(score.detach().cpu())
hits = sorted(range(len(results_list)), key=lambda i: results_list[i], reverse=True)
top_5_contexes = []
top_5_scores = []
for j in hits[0:5]:
top_5_contexes.append(base_contexes[j])
top_5_scores.append(results_list[j])
return top_5_contexes, top_5_scores
def search_pipeline(question, search_method):
if search_method == 1: #Retrieve - rerank with fine-tuned cross encoder
return retrieve_rerank_with_trained_cross_encoder(question)
if search_method == 2:
return custom_dpr_pipeline(question) # DPR only
# if search_method == 3:
# return base_dpr_pipeline(question) # DPR only
if search_method == 4:
return retrieve_rerank(question)
def mean_pooling(token_embeddings, mask):
token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.)
sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
return sentence_embeddings
def custom_dpr_pipeline(question):
#paragraphs
tokenized_question = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt")
question_embedding = dpr_trained.model.question_model(**tokenized_question)
question_embedding = mean_pooling(question_embedding[0], tokenized_question['attention_mask'])
# question_embedding = question_embedding['pooler_output']
results_list = []
for i,context_embedding in enumerate(dpr_context_embeddings):
score = dot_product(question_embedding, context_embedding)
results_list.append(score.detach().cpu())
hits = sorted(range(len(results_list)), key=lambda i: results_list[i], reverse=True)
top_5_contexes = []
top_5_scores = []
for j in hits[0:5]:
top_5_contexes.append(dpr_contexes[j])
top_5_scores.append(results_list[j])
return top_5_contexes, top_5_scores
def retrieve(question):
# Semantic Search (Retrieve)
question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
hits = util.semantic_search(question_embedding, context_embeddings, top_k=100)
if len(hits) == 0:
return []
hits = hits[0]
return hits
def retrieve_rerank_with_trained_cross_encoder(question):
hits = retrieve(question)
cross_inp = [(question, contexes[hit['corpus_id']]) for hit in hits]
cross_scores = trained_cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-5 hits from re-ranker
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
top_5_contexes = []
top_5_scores = []
for hit in hits[0:5]:
top_5_contexes.append(contexes[hit['corpus_id']])
top_5_scores.append(hit['cross-score'])
return top_5_contexes, top_5_scores
def interactive_table(dataframe):
gb = GridOptionsBuilder.from_dataframe(dataframe)
gb.configure_pagination(paginationAutoPageSize=True)
gb.configure_side_bar()
gb.configure_selection('single', rowMultiSelectWithClick=True,
groupSelectsChildren="Group checkbox select children") # Enable multi-row selection
gridOptions = gb.build()
grid_response = AgGrid(
dataframe,
gridOptions=gridOptions,
data_return_mode='AS_INPUT',
update_mode='SELECTION_CHANGED',
enable_enterprise_modules=False,
fit_columns_on_grid_load=False,
theme='streamlit', # Add theme color to the table
height=350,
width='100%',
reload_data=False
)
return grid_response
def img_to_bytes(img_path):
img_bytes = Path(img_path).read_bytes()
encoded = base64.b64encode(img_bytes).decode()
return encoded
def qa_main_widgetsv2():
st.title("Question Answering Demo")
st.markdown("""---""")
option = st.selectbox("Select a search method:", list(selectbox_selections.keys()))
header_html = "<center> <img src='data:image/png;base64,{}' class='img-fluid' width='60%', height='40%'> </center>".format(
img_to_bytes(imagebox_selections[option])
)
st.markdown(
header_html, unsafe_allow_html=True,
)
st.markdown("""---""")
col1, col3 = st.columns([1, 1])
with col1:
form = st.form(key='first_form')
question = form.text_area("What is your question?:", height=200)
submit = form.form_submit_button('Submit')
if "form_submit" not in st.session_state:
st.session_state.form_submit = False
if submit:
st.session_state.form_submit = True
if st.session_state.form_submit and question != '':
with st.spinner(text='Related context search in progress..'):
top_5_contexes, top_5_scores = search_pipeline(question.strip(), selectbox_selections[option])
if len(top_5_contexes) == 0:
st.error("Related context not found!")
st.session_state.form_submit = False
else:
for i, context in enumerate(top_5_contexes):
st.markdown(f"## Related Context - {i + 1} (score: {top_5_scores[i]:.2f})")
st.markdown(context)
st.markdown("""---""")
with col3:
st.markdown("## Our Questions")
grid_response = interactive_table(dataframe_bsbs)
data2 = grid_response['selected_rows']
if "grid_click_2" not in st.session_state:
st.session_state.grid_click_2 = False
if len(data2) > 0:
st.session_state.grid_click_2 = True
if st.session_state.grid_click_2:
selection = data2[0]
# st.markdown("## Context & Answer:")
st.markdown("### Context:")
st.write(selection['context'])
st.markdown("### Question:")
st.write(selection['question'])
# st.markdown("### Answer:")
# st.write(selection['answer'])
st.session_state.grid_click_2 = False
@st.cache(show_spinner=False, allow_output_mutation = True)
def load_models(dpr_model_path, auth_token, cross_encoder_model_path):
dpr_trained = AutoModel.from_pretrained(dpr_model_path, use_auth_token=auth_token,
trust_remote_code=True)
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
bi_encoder.max_seq_length = 500
trained_cross_encoder = CrossEncoder(cross_encoder_model_path)
base_dpr_context_encoder = AutoModel.from_pretrained('facebook/contriever-msmarco')
question_tokenizer = AutoTokenizer.from_pretrained('facebook/contriever-msmarco')
return dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer, base_dpr_context_encoder
context_embeddings, contexes = load_paragraphs('st-context-embeddings.pkl')
dpr_context_embeddings, dpr_contexes = load_paragraphs('basecamp-dpr-contriever-embeddings.pkl')
#base_dpr_context_embeddings, base_contexes = load_paragraphs('basecamp-base-dpr-contriever-embeddings.pkl')
dataframe_bsbs = load_dataframes()
dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer, base_dpr_context_encoder = copy.deepcopy(load_models(st.secrets["DPR_MODEL_PATH"], st.secrets["AUTH_TOKEN"], st.secrets["CROSS_ENCODER_MODEL_PATH"]))
qa_main_widgetsv2()
#if __name__ == '__main__':
# top_5_contexes, top_5_scores = search_pipeline('What contributions does 37Signals make to open-source projects?', 3)
|