# Copyright (c) 2024 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/mlfoundations/open_flamingo under the MIT license. # LICENSE is in incl_licenses directory. import torch.nn as nn try: from .helpers import GatedCrossAttentionBlock from .utils import getattr_recursive, setattr_recursive except: from helpers import GatedCrossAttentionBlock from utils import getattr_recursive, setattr_recursive class FlamingoLayer(nn.Module): """ FlamingoLayer is a wrapper around the GatedCrossAttentionBlock and DecoderLayer. """ def __init__( self, gated_cross_attn_layer, decoder_layer, gradient_checkpointing=False ): super().__init__() self.gated_cross_attn_layer = gated_cross_attn_layer self.decoder_layer = decoder_layer self.audio_x = None self.audio_x_mask = None self.few_shot_mask = None self.media_locations = None if self.gated_cross_attn_layer is not None: self.gated_cross_attn_layer._use_gradient_checkpointing = ( gradient_checkpointing ) self.decoder_layer._use_gradient_checkpointing = gradient_checkpointing def is_conditioned(self) -> bool: """Check whether the layer is conditioned.""" return (self.audio_x is not None) and (self.audio_x_mask is not None) and (self.media_locations is not None) def condition_audio_x(self, audio_x, audio_x_mask): self.audio_x = audio_x self.audio_x_mask = audio_x_mask def condition_media_locations(self, media_locations): self.media_locations = media_locations def condition_use_cached_media(self, use_cached_media): self.use_cached_media = use_cached_media def forward( self, lang_x, attention_mask=None, **decoder_layer_kwargs, ): if self.gated_cross_attn_layer is not None: if self.audio_x is None: raise ValueError("audio_x must be conditioned before forward pass") if self.media_locations is None: raise ValueError( "media_locations must be conditioned before forward pass" ) lang_x = self.gated_cross_attn_layer( lang_x, self.audio_x, self.audio_x_mask, media_locations=self.media_locations, use_cached_media=self.use_cached_media, ) # Normal decoder layer lang_x = self.decoder_layer( lang_x, attention_mask=attention_mask, **decoder_layer_kwargs ) return lang_x class FlamingoLMMixin(nn.Module): """ Mixin to add cross-attention layers to a language model. """ def set_decoder_layers_attr_name(self, decoder_layers_attr_name): self.decoder_layers_attr_name = decoder_layers_attr_name def _get_decoder_layers(self): return getattr_recursive(self, self.decoder_layers_attr_name) def _set_decoder_layers(self, value): setattr_recursive(self, self.decoder_layers_attr_name, value) def init_flamingo( self, media_token_id, lang_hidden_size, audio_hidden_size, max_window_per_audio, cross_attn_every_n_layers, gradient_checkpointing, ): """ Initialize Flamingo by adding a new gated cross attn to the decoder. Store the media token id for computing the media locations. """ self.old_decoder_blocks = self._get_decoder_layers() self.gated_cross_attn_layers = nn.ModuleList( [ GatedCrossAttentionBlock( dim=lang_hidden_size, dim_audio=audio_hidden_size, max_window_per_audio=max_window_per_audio, only_attend_immediate_media=False, ) if (layer_idx + 1) % cross_attn_every_n_layers == 0 else None for layer_idx, _ in enumerate(self._get_decoder_layers()) ] ) self.init_flamingo_layers(gradient_checkpointing) self.media_token_id = media_token_id self.initialized_flamingo = True self._use_cached_audio_x = False def init_flamingo_layers(self, gradient_checkpointing): """ Re initializes the FlamingoLayers. Propagates any changes made to self.gated_corss_attn_layers or self.old_decoder_blocks """ self._set_decoder_layers( nn.ModuleList( [ FlamingoLayer( gated_cross_attn_layer, decoder_layer, gradient_checkpointing ) for gated_cross_attn_layer, decoder_layer in zip( self.gated_cross_attn_layers, self.old_decoder_blocks ) ] ) ) def forward(self, input_ids, attention_mask, **kwargs): """Condition the Flamingo layers on the media locations before forward()""" if not self.initialized_flamingo: raise ValueError( "Flamingo layers are not initialized. Please call `init_flamingo` first." ) media_locations = input_ids == self.media_token_id use_cached_media_locations = ( self._use_cached_audio_x and self.is_conditioned() and not media_locations.any() ) for layer in self._get_decoder_layers(): if not use_cached_media_locations: layer.condition_media_locations(media_locations) layer.condition_use_cached_media(use_cached_media_locations) kwargs["input_ids"] = input_ids kwargs["attention_mask"] = attention_mask return super().forward(**kwargs) def is_conditioned(self) -> bool: """Check whether all decoder layers are already conditioned.""" return all(l.is_conditioned() for l in self._get_decoder_layers()) def clear_conditioned_layers(self): for layer in self._get_decoder_layers(): layer.condition_audio_x(None, None) layer.condition_media_locations(None) layer.condition_use_cached_media(None)