|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from collections import OrderedDict |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
def get_parameter_dtype(parameter: torch.nn.Module): |
|
try: |
|
params = tuple(parameter.parameters()) |
|
if len(params) > 0: |
|
return params[0].dtype |
|
|
|
buffers = tuple(parameter.buffers()) |
|
if len(buffers) > 0: |
|
return buffers[0].dtype |
|
|
|
except StopIteration: |
|
|
|
|
|
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: |
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] |
|
return tuples |
|
|
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes) |
|
first_tuple = next(gen) |
|
return first_tuple[1].dtype |
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
|
|
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): |
|
super().__init__() |
|
ps = ksize // 2 |
|
if in_c != out_c or sk == False: |
|
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) |
|
else: |
|
self.in_conv = None |
|
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) |
|
self.act = nn.ReLU() |
|
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) |
|
if sk == False: |
|
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) |
|
else: |
|
self.skep = None |
|
|
|
self.down = down |
|
if self.down == True: |
|
self.down_opt = Downsample(in_c, use_conv=use_conv) |
|
|
|
def forward(self, x): |
|
if self.down == True: |
|
x = self.down_opt(x) |
|
if self.in_conv is not None: |
|
x = self.in_conv(x) |
|
|
|
h = self.block1(x) |
|
h = self.act(h) |
|
h = self.block2(h) |
|
if self.skep is not None: |
|
return h + self.skep(x) |
|
else: |
|
return h + x |
|
|
|
class Low_CNN(nn.Module): |
|
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True): |
|
super(Low_CNN, self).__init__() |
|
self.unshuffle = nn.PixelUnshuffle(8) |
|
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv)) |
|
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1) |
|
self.pool = nn.AvgPool2d(kernel_size=2, stride=2) |
|
self.adapter = nn.Linear(1280, 1280) |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def forward(self, x): |
|
x = self.unshuffle(x) |
|
x = self.conv_in(x) |
|
x = self.body(x) |
|
x = self.pool(x) |
|
x = x.flatten(start_dim=1, end_dim=-1) |
|
x = self.adapter(x) |
|
return x |
|
|
|
|
|
class Middle_CNN(nn.Module): |
|
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True): |
|
super(Middle_CNN, self).__init__() |
|
self.unshuffle = nn.PixelUnshuffle(8) |
|
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv)) |
|
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1) |
|
self.pool = nn.AvgPool2d(kernel_size=2, stride=2) |
|
self.adapter = nn.Linear(1280, 1280) |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def forward(self, x): |
|
x = self.unshuffle(x) |
|
x = self.conv_in(x) |
|
x = self.body(x) |
|
x = self.pool(x) |
|
x = x.flatten(start_dim=1, end_dim=-1) |
|
x = self.adapter(x) |
|
return x |
|
|
|
|
|
class High_CNN(nn.Module): |
|
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True): |
|
super(High_CNN, self).__init__() |
|
self.unshuffle = nn.PixelUnshuffle(8) |
|
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv), |
|
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv)) |
|
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1) |
|
self.pool = nn.AvgPool2d(kernel_size=2, stride=2) |
|
self.adapter = nn.Linear(1280, 1280) |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def forward(self, x): |
|
x = self.unshuffle(x) |
|
x = self.conv_in(x) |
|
x = self.body(x) |
|
x = self.pool(x) |
|
x = x.flatten(start_dim=1, end_dim=-1) |
|
x = self.adapter(x) |
|
return x |
|
|
|
|
|
class Style_Aware_Encoder(torch.nn.Module): |
|
def __init__(self, image_encoder): |
|
super().__init__() |
|
self.image_encoder = image_encoder |
|
self.projection_dim = self.image_encoder.config.projection_dim |
|
self.num_positions = 59 |
|
self.embed_dim = 1280 |
|
self.cnn = nn.ModuleList( |
|
[High_CNN(sk=True, use_conv=False), |
|
Middle_CNN(sk=True, use_conv=False), |
|
Low_CNN(sk=True, use_conv=False)] |
|
) |
|
self.style_embeddings = nn.ParameterList( |
|
[nn.Parameter(torch.randn(self.embed_dim)), |
|
nn.Parameter(torch.randn(self.embed_dim)), |
|
nn.Parameter(torch.randn(self.embed_dim))] |
|
) |
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) |
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) |
|
|
|
def forward(self, inputs, batch_size=1): |
|
embeddings = [] |
|
for idx, x in enumerate(inputs): |
|
class_embed = self.style_embeddings[idx].expand(batch_size, 1, -1) |
|
patch_embed = self.cnn[idx](x) |
|
patch_embed = patch_embed.view(batch_size, -1, patch_embed.shape[1]) |
|
embedding = torch.cat([class_embed, patch_embed], dim=1) |
|
embeddings.append(embedding) |
|
embeddings = torch.cat(embeddings, dim=1) |
|
embeddings = embeddings + self.position_embedding(self.position_ids) |
|
embeddings = self.image_encoder.vision_model.pre_layrnorm(embeddings) |
|
encoder_outputs = self.image_encoder.vision_model.encoder( |
|
inputs_embeds=embeddings, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
) |
|
last_hidden_state = encoder_outputs[0] |
|
pooled_output = last_hidden_state[:, [0, 9, 26], :] |
|
pooled_output = self.image_encoder.vision_model.post_layernorm(pooled_output) |
|
out = self.image_encoder.visual_projection(pooled_output) |
|
return out |
|
|