|
import os |
|
from typing import List |
|
|
|
|
|
import torch |
|
from typing import Optional, Union, Any, Dict, Tuple, List, Callable |
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.pipelines.controlnet.pipeline_controlnet import retrieve_timesteps |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline |
|
from diffusers.models.controlnet import ControlNetModel |
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.pipelines.controlnet import MultiControlNetModel |
|
from PIL import Image |
|
from safetensors import safe_open |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
from torchvision import transforms |
|
from .style_encoder import Style_Aware_Encoder |
|
from .tools import pre_processing |
|
|
|
from .utils import is_torch2_available |
|
|
|
if is_torch2_available(): |
|
from .attention_processor import ( |
|
AttnProcessor2_0 as AttnProcessor, |
|
) |
|
from .attention_processor import ( |
|
CNAttnProcessor2_0 as CNAttnProcessor, |
|
) |
|
from .attention_processor import ( |
|
IPAttnProcessor2_0 as IPAttnProcessor, |
|
) |
|
else: |
|
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor |
|
from .resampler import Resampler |
|
|
|
|
|
class ImageProjModel(torch.nn.Module): |
|
"""Projection Model""" |
|
|
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds): |
|
embeds = image_embeds |
|
clip_extra_context_tokens = self.proj(embeds).reshape( |
|
-1, self.clip_extra_context_tokens, self.cross_attention_dim |
|
) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class MLPProjModel(torch.nn.Module): |
|
"""SD model with image prompt""" |
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): |
|
super().__init__() |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), |
|
torch.nn.LayerNorm(cross_attention_dim) |
|
) |
|
|
|
def forward(self, image_embeds): |
|
clip_extra_context_tokens = self.proj(image_embeds) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class IPAdapter: |
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): |
|
self.device = device |
|
self.image_encoder_path = image_encoder_path |
|
self.ip_ckpt = ip_ckpt |
|
self.num_tokens = num_tokens |
|
|
|
self.pipe = sd_pipe.to(self.device) |
|
self.set_ip_adapter() |
|
|
|
|
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( |
|
self.device, dtype=torch.float16 |
|
) |
|
self.clip_image_processor = CLIPImageProcessor() |
|
|
|
self.image_proj_model = self.init_proj() |
|
|
|
self.load_ip_adapter() |
|
|
|
def init_proj(self): |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=self.num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor() |
|
else: |
|
attn_procs[name] = IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
unet.set_attn_processor(attn_procs) |
|
if hasattr(self.pipe, "controlnet"): |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
|
|
def load_ip_adapter(self): |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"]) |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_scale(self, scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, IPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def generate( |
|
self, |
|
pil_image=None, |
|
clip_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
if pil_image is not None: |
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
else: |
|
num_prompts = clip_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_image, clip_image_embeds=clip_image_embeds |
|
) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterXL(IPAdapter): |
|
"""SDXL""" |
|
|
|
def generate( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterPlus(IPAdapter): |
|
"""IP-Adapter with fine-grained features""" |
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
|
|
class IPAdapterFull(IPAdapterPlus): |
|
"""IP-Adapter with full features""" |
|
|
|
def init_proj(self): |
|
image_proj_model = MLPProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.hidden_size, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
|
|
class IPAdapterPlusXL(IPAdapter): |
|
"""SDXL""" |
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image): |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def generate( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
def StyleProcessor(style_image, device): |
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
]) |
|
|
|
crop = transforms.Compose( |
|
[ |
|
transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(512), |
|
] |
|
) |
|
style_image = crop(style_image) |
|
high_style_patch, middle_style_patch, low_style_patch = pre_processing(style_image.convert("RGB"), transform) |
|
|
|
high_style_patch, middle_style_patch, low_style_patch = (high_style_patch[torch.randperm(high_style_patch.shape[0])], |
|
middle_style_patch[torch.randperm(middle_style_patch.shape[0])], |
|
low_style_patch[torch.randperm(low_style_patch.shape[0])]) |
|
return (high_style_patch.to(device, dtype=torch.float32), middle_style_patch.to(device, dtype=torch.float32), low_style_patch.to(device, dtype=torch.float32)) |
|
|
|
|
|
class StyleShot(torch.nn.Module): |
|
"""StyleShot generation""" |
|
def __init__(self, device, pipe, ip_ckpt, style_aware_encoder_ckpt, transformer_patch): |
|
super().__init__() |
|
self.num_tokens = 6 |
|
self.device = device |
|
self.pipe = pipe |
|
|
|
self.set_ip_adapter(device) |
|
self.ip_ckpt = ip_ckpt |
|
|
|
self.style_aware_encoder = Style_Aware_Encoder(CLIPVisionModelWithProjection.from_pretrained(transformer_patch)).to(self.device, dtype=torch.float32) |
|
self.style_aware_encoder.load_state_dict(torch.load(style_aware_encoder_ckpt)) |
|
|
|
self.style_image_proj_modules = self.init_proj() |
|
|
|
self.load_ip_adapter() |
|
self.pipe = self.pipe.to(self.device, dtype=torch.float32) |
|
|
|
def init_proj(self): |
|
style_image_proj_modules = torch.nn.ModuleList([ |
|
ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.style_aware_encoder.projection_dim, |
|
clip_extra_context_tokens=2, |
|
), |
|
ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.style_aware_encoder.projection_dim, |
|
clip_extra_context_tokens=2, |
|
), |
|
ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.style_aware_encoder.projection_dim, |
|
clip_extra_context_tokens=2, |
|
)]) |
|
return style_image_proj_modules.to(self.device, dtype=torch.float32) |
|
|
|
def load_ip_adapter(self): |
|
sd = torch.load(self.ip_ckpt, map_location="cpu") |
|
style_image_proj_sd = {} |
|
ip_sd = {} |
|
controlnet_sd = {} |
|
for k in sd: |
|
if k.startswith("unet"): |
|
pass |
|
elif k.startswith("style_image_proj_modules"): |
|
style_image_proj_sd[k.replace("style_image_proj_modules.", "")] = sd[k] |
|
elif k.startswith("adapter_modules"): |
|
ip_sd[k.replace("adapter_modules.", "")] = sd[k] |
|
elif k.startswith("controlnet"): |
|
controlnet_sd[k.replace("controlnet.", "")] = sd[k] |
|
|
|
self.style_image_proj_modules.load_state_dict(style_image_proj_sd, strict=True) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
if hasattr(self.pipe, "controlnet") and isinstance(self.pipe, StyleContentStableDiffusionControlNetPipeline): |
|
self.pipe.controlnet.load_state_dict(controlnet_sd, strict=True) |
|
ip_layers.load_state_dict(ip_sd, strict=True) |
|
|
|
def set_ip_adapter(self, device): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor() |
|
else: |
|
attn_procs[name] = IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.num_tokens, |
|
).to(device, dtype=torch.float16) |
|
if hasattr(self.pipe, "controlnet") and not isinstance(self.pipe, StyleContentStableDiffusionControlNetPipeline): |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
unet.set_attn_processor(attn_procs) |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, style_image=None): |
|
style_image = StyleProcessor(style_image, self.device) |
|
style_embeds = self.style_aware_encoder(style_image).to(self.device, dtype=torch.float32) |
|
style_ip_tokens = [] |
|
uncond_style_ip_tokens = [] |
|
for idx, style_embed in enumerate([style_embeds[:, 0, :], style_embeds[:, 1, :], style_embeds[:, 2, :]]): |
|
style_ip_tokens.append(self.style_image_proj_modules[idx](style_embed)) |
|
uncond_style_ip_tokens.append(self.style_image_proj_modules[idx](torch.zeros_like(style_embed))) |
|
style_ip_tokens = torch.cat(style_ip_tokens, dim=1) |
|
uncond_style_ip_tokens = torch.cat(uncond_style_ip_tokens, dim=1) |
|
return style_ip_tokens, uncond_style_ip_tokens |
|
|
|
def set_scale(self, scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, IPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def samples(self, image_prompt_embeds, uncond_image_prompt_embeds, num_samples, device, prompt, negative_prompt, |
|
seed, guidance_scale, num_inference_steps, content_image, **kwargs, ): |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None |
|
if content_image is None: |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
else: |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
image=content_image, |
|
style_embeddings=image_prompt_embeds, |
|
negative_style_embeddings=uncond_image_prompt_embeds, |
|
**kwargs, |
|
).images |
|
return images |
|
|
|
def generate( |
|
self, |
|
style_image=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=1, |
|
seed=42, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
content_image=None, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
style_ip_tokens, uncond_style_ip_tokens = self.get_image_embeds(style_image) |
|
generate_images = [] |
|
for p in prompt: |
|
images = self.samples(style_ip_tokens, uncond_style_ip_tokens, num_samples, self.device, p * num_prompts, negative_prompt, seed, guidance_scale, num_inference_steps, content_image, **kwargs, ) |
|
generate_images.append(images) |
|
return generate_images |
|
|
|
|
|
class StyleContentStableDiffusionControlNetPipeline(StableDiffusionControlNetPipeline): |
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
style_embeddings: Optional[torch.FloatTensor] = None, |
|
negative_style_embeddings: Optional[torch.FloatTensor] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be |
|
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height |
|
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in |
|
`init`, images must be passed as a list such that each element of the list can be correctly batched for |
|
input to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single ControlNet, |
|
each will be paired with each prompt in the `prompt` list. This also applies to multiple ControlNets, |
|
where a list of image lists can be passed to batch for each prompt and each ControlNet. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. |
|
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding |
|
if `do_classifier_free_guidance` is set to `True`. |
|
If not provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all |
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeine class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
image = self.prepare_image( |
|
image=image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
height, width = image.shape[-2:] |
|
|
|
elif isinstance(controlnet, MultiControlNetModel): |
|
images = [] |
|
|
|
|
|
if isinstance(image[0], list): |
|
|
|
image = [list(t) for t in zip(*image)] |
|
|
|
for image_ in image: |
|
image_ = self.prepare_image( |
|
image=image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
images.append(image_) |
|
|
|
image = images |
|
height, width = image[0].shape[-2:] |
|
else: |
|
assert False |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = ( |
|
{"image_embeds": image_embeds} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None |
|
else None |
|
) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
is_unet_compiled = is_compiled_module(self.unet) |
|
is_controlnet_compiled = is_compiled_module(self.controlnet) |
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: |
|
torch._inductor.cudagraph_mark_step_begin() |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
if self.do_classifier_free_guidance: |
|
style_embeddings_input = torch.cat([negative_style_embeddings, style_embeddings]) |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=style_embeddings_input, |
|
controlnet_cond=image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.unet.to("cpu") |
|
self.controlnet.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ |
|
0 |
|
] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |