custom-diffusion / inference.py
Nupur Kumari
custom-diffusion-space
71da51f
raw
history blame
3.34 kB
from __future__ import annotations
import gc
import pathlib
import sys
import gradio as gr
import PIL.Image
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
sys.path.insert(0, 'custom-diffusion')
from sys import diffuser_training
# def load_model(text_encoder, tokenizer, unet, save_path, modifier_token, freeze_model='crossattn_kv'):
# st = torch.load(save_path)
# if 'text_encoder' in st:
# text_encoder.load_state_dict(st['text_encoder'])
# if modifier_token in st:
# _ = tokenizer.add_tokens(modifier_token)
# modifier_token_id = tokenizer.convert_tokens_to_ids(modifier_token)
# # Resize the token embeddings as we are adding new special tokens to the tokenizer
# text_encoder.resize_token_embeddings(len(tokenizer))
# token_embeds = text_encoder.get_input_embeddings().weight.data
# token_embeds[modifier_token_id] = st[modifier_token]
# print(st.keys())
# for name, params in unet.named_parameters():
# if freeze_model == 'crossattn':
# if 'attn2' in name:
# params.data.copy_(st['unet'][f'{name}'])
# else:
# if 'attn2.to_k' in name or 'attn2.to_v' in name:
# params.data.copy_(st['unet'][f'{name}'])
class InferencePipeline:
def __init__(self):
self.pipe = None
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.weight_path = None
def clear(self) -> None:
self.weight_path = None
del self.pipe
self.pipe = None
torch.cuda.empty_cache()
gc.collect()
@staticmethod
def get_weight_path(name: str) -> pathlib.Path:
curr_dir = pathlib.Path(__file__).parent
return curr_dir / name
def load_pipe(self, model_id: str, filename: str) -> None:
weight_path = self.get_weight_path(filename)
if weight_path == self.weight_path:
return
self.weight_path = weight_path
weight = torch.load(self.weight_path, map_location=self.device)
if self.device.type == 'cpu':
pipe = StableDiffusionPipeline.from_pretrained(model_id)
else:
pipe = StableDiffusionPipeline.from_pretrained(
model_id, torch_dtype=torch.float16)
pipe = pipe.to(self.device)
diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, '<new1>')
self.pipe = pipe
def run(
self,
base_model: str,
weight_name: str,
prompt: str,
seed: int,
n_steps: int,
guidance_scale: float,
eta: float,
batch_size: int,
) -> PIL.Image.Image:
if not torch.cuda.is_available():
raise gr.Error('CUDA is not available.')
self.load_pipe(base_model, weight_name)
generator = torch.Generator(device=self.device).manual_seed(seed)
out = self.pipe([prompt]*batch_size,
num_inference_steps=n_steps,
guidance_scale=guidance_scale,
eta = eta,
generator=generator) # type: ignore
out = out.images
out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out]))
return out