import torch import re import gradio as gr from PIL import Image from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel import os import tensorflow as tf os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' device='cpu' model_id = "nttdataspain/vit-gpt2-stablediffusion2-lora" model = VisionEncoderDecoderModel.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) feature_extractor = ViTFeatureExtractor.from_pretrained(model_id) # Predict function def predict(image): img = image.convert('RGB') model.eval() pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values with torch.no_grad(): output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds[0] input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) output = gr.outputs.Textbox(type="text",label="Captions") examples_folder = os.path.join(os.path.dirname(__file__), "examples") examples = [os.path.join(examples_folder, file) for file in os.listdir(examples_folder)] with gr.Blocks() as demo: gr.HTML( """

📸 ViT Image-to-Text with LORA 📝

In the field of large language models, the challenge of fine-tuning has long perplexed researchers. Microsoft, however, has unveiled an innovative solution called Low-Rank Adaptation (LoRA). With the emergence of behemoth models like GPT-3 boasting billions of parameters, the cost of fine-tuning them for specific tasks or domains has become exorbitant.

You can find more info here: Medium article

""") with gr.Row(): with gr.Column(scale=1): img = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) button = gr.Button(value="Describe") with gr.Column(scale=1): out = gr.outputs.Textbox(type="text",label="Captions") button.click(predict, inputs=[img], outputs=[out]) gr.Examples( examples=examples, inputs=img, outputs=out, fn=predict, cache_examples=True, ) demo.launch(debug=True)