ntt123 commited on
Commit
e7b127e
1 Parent(s): 1dca766

Delete text.py

Browse files
Files changed (1) hide show
  1. text.py +0 -92
text.py DELETED
@@ -1,92 +0,0 @@
1
- # """ from https://github.com/keithito/tacotron """
2
-
3
- # """
4
- # Cleaners are transformations that run over the input text at both training and eval time.
5
-
6
- # Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
- # hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
- # 1. "english_cleaners" for English text
9
- # 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
- # the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
- # 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
- # the symbols in symbols.py to match your data).
13
- # """
14
-
15
- # import re
16
- # from mynumbers import normalize_numbers
17
- # from unidecode import unidecode
18
-
19
- # # Regular expression matching whitespace:
20
- # _whitespace_re = re.compile(r"\s+")
21
-
22
- # # List of (regular expression, replacement) pairs for abbreviations:
23
- # _abbreviations = [
24
- # (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
25
- # for x in [
26
- # ("mrs", "misess"),
27
- # ("mr", "mister"),
28
- # ("dr", "doctor"),
29
- # ("st", "saint"),
30
- # ("co", "company"),
31
- # ("jr", "junior"),
32
- # ("maj", "major"),
33
- # ("gen", "general"),
34
- # ("drs", "doctors"),
35
- # ("rev", "reverend"),
36
- # ("lt", "lieutenant"),
37
- # ("hon", "honorable"),
38
- # ("sgt", "sergeant"),
39
- # ("capt", "captain"),
40
- # ("esq", "esquire"),
41
- # ("ltd", "limited"),
42
- # ("col", "colonel"),
43
- # ("ft", "fort"),
44
- # ]
45
- # ]
46
-
47
-
48
- # def expand_abbreviations(text):
49
- # for regex, replacement in _abbreviations:
50
- # text = re.sub(regex, replacement, text)
51
- # return text
52
-
53
-
54
- # def expand_numbers(text):
55
- # return normalize_numbers(text)
56
-
57
-
58
- # def lowercase(text):
59
- # return text.lower()
60
-
61
-
62
- # def collapse_whitespace(text):
63
- # return re.sub(_whitespace_re, " ", text)
64
-
65
-
66
- # def convert_to_ascii(text):
67
- # return unidecode(text)
68
-
69
-
70
- # def basic_cleaners(text):
71
- # """Basic pipeline that lowercases and collapses whitespace without transliteration."""
72
- # text = lowercase(text)
73
- # text = collapse_whitespace(text)
74
- # return text
75
-
76
-
77
- # def transliteration_cleaners(text):
78
- # """Pipeline for non-English text that transliterates to ASCII."""
79
- # text = convert_to_ascii(text)
80
- # text = lowercase(text)
81
- # text = collapse_whitespace(text)
82
- # return text
83
-
84
-
85
- # def english_cleaners(text):
86
- # """Pipeline for English text, including number and abbreviation expansion."""
87
- # text = convert_to_ascii(text)
88
- # text = lowercase(text)
89
- # text = expand_numbers(text)
90
- # text = expand_abbreviations(text)
91
- # text = collapse_whitespace(text)
92
- # return text