|
import numpy as np |
|
from wavegru_mod import WaveGRU |
|
|
|
|
|
def extract_weight_mask(net): |
|
data = {} |
|
data["embed_weight"] = net.embed.weight |
|
data["gru_h_zrh_weight"] = net.rnn.h_zrh_fc.weight |
|
data["gru_h_zrh_mask"] = net.gru_pruner.h_zrh_fc_mask |
|
data["gru_h_zrh_bias"] = net.rnn.h_zrh_fc.bias |
|
|
|
data["o1_weight"] = net.o1.weight |
|
data["o1_mask"] = net.o1_pruner.mask |
|
data["o1_bias"] = net.o1.bias |
|
data["o2_weight"] = net.o2.weight |
|
data["o2_mask"] = net.o2_pruner.mask |
|
data["o2_bias"] = net.o2.bias |
|
return data |
|
|
|
|
|
def load_wavegru_cpp(data, repeat_factor): |
|
"""load wavegru weight to cpp object""" |
|
embed = data["embed_weight"] |
|
rnn_dim = data["gru_h_zrh_bias"].shape[0] // 3 |
|
net = WaveGRU(rnn_dim, repeat_factor) |
|
net.load_embed(embed) |
|
|
|
m = np.ascontiguousarray(data["gru_h_zrh_weight"].T) |
|
mask = np.ascontiguousarray(data["gru_h_zrh_mask"].T) |
|
b = data["gru_h_zrh_bias"] |
|
|
|
o1 = np.ascontiguousarray(data["o1_weight"].T) |
|
masko1 = np.ascontiguousarray(data["o1_mask"].T) |
|
o1b = data["o1_bias"] |
|
|
|
o2 = np.ascontiguousarray(data["o2_weight"].T) |
|
masko2 = np.ascontiguousarray(data["o2_mask"].T) |
|
o2b = data["o2_bias"] |
|
|
|
net.load_weights(m, mask, b, o1, masko1, o1b, o2, masko2, o2b) |
|
|
|
return net |
|
|