ImageCaption / source /vocab.py
nssharmaofficial's picture
First init
cb7427c
raw
history blame
4.74 kB
import os
from collections import Counter
from nltk.tokenize import RegexpTokenizer
from config import Config
class Vocab:
"""
Offers word2index and index2word functionality after counting words in input sentences.
Allows choosing the size of the vocabulary by taking the most common words. Explicitly reserves four indices:
<pad>, <sos>, <eos> and <unk>.
"""
def __init__(self, sentence_splitter=None):
"""
Args:
sentence_splitter: tokenizing function
"""
self.config = Config()
self.counter = Counter()
self.word2index = dict()
self.index2word = dict()
self.size = 0
# predefined tokens
self.PADDING_INDEX = 0
self.SOS = 1
self.EOS = 2
self.UNKNOWN_WORD_INDEX = 3
if sentence_splitter is None:
# matches sequences of characters including ones between < >
word_regex = r'(?:\w+|<\w+>)'
# tokenize the string into words
sentence_splitter = RegexpTokenizer(word_regex).tokenize
self.splitter = sentence_splitter
def add_sentence(self, sentence: str):
"""
Update word counts from sentence after tokenizing it into words
"""
self.counter.update(self.splitter(sentence))
def build_vocab(self, vocab_size: int, file_name: str):
""" Build vocabulary dictionaries word2index and index2word from a text file at config.ROOT path
Args:
vocab_size (int): size of vocabulary (including 4 predefined tokens: <pad>, <sos>, <eos>, <unk>)
file_name (str): name of the text file from which the vocabulary will be built.
Note: the lines in file are assumed to be in form: 'word SPACE index' and
it asssumes a header line (for example: 'captions.txt')
"""
filepath = os.path.join(self.config.ROOT, file_name)
try:
with open(filepath, 'r', encoding='utf-8') as file:
for i, line in enumerate(file):
# ignore header line
if i == 0:
continue
caption = line.strip().lower().split(",", 1)[1] # id=0, caption=1
self.add_sentence(caption)
except Exception as e:
print(f"Error processing file {filepath}: {e}")
return
# adding predefined tokens in the vocabulary
self._add_predefined_tokens()
words = self.counter.most_common(vocab_size - 4)
# (index + 4) because first 4 tokens are the predefined ones
for index, (word, _) in enumerate(words, start=4):
self.word2index[word] = index
self.index2word[index] = word
self.size = len(self.word2index)
def _add_predefined_tokens(self):
predefined_tokens = ['<pad>', '<sos>', '<eos>', '<unk>']
for index, token in enumerate(predefined_tokens):
self.word2index[token] = index
self.index2word[index] = token
def word_to_index(self, word: str) -> int:
""" Map word to index from word2index dictionary in vocabulary
Args:
word (str): word to be mapped
Returns:
int: index matched to the word
"""
try:
return self.word2index[word]
except KeyError:
return self.UNKNOWN_WORD_INDEX
def index_to_word(self, index: int) -> str:
""" Map word to index from index2word dictionary in vocabulary
Args:
word (str): index to be mapped
Returns:
str: word matched to the index
"""
try:
return self.index2word[index]
except KeyError:
return self.index2word[self.UNKNOWN_WORD_INDEX]
def load_vocab(self, file_name: str):
""" Load the word2index and index2word dictionaries from a text file at config.ROOT path
Args:
file_name (str): name of the text file where the vocabulary is saved (i.e 'word2index.txt')
Note: the lines in file are assumed to be in form: 'word SPACE index' and it asssumes a header line
"""
filepath = os.path.join(self.config.ROOT, file_name)
self.word2index = dict()
self.index2word = dict()
try:
with open(filepath) as file:
for line in file:
line = line.strip().split(' ')
word, index = line[0], line[1]
self.word2index[word] = int(index)
self.index2word[int(index)] = word
except Exception as e:
print(f"Error loading vocabulary from file {filepath}: {e}")