kotaemon-demo / flowsettings.py
trducng's picture
initial commit
ffbe1f3
raw
history blame
8.19 kB
import os
from importlib.metadata import version
from inspect import currentframe, getframeinfo
from pathlib import Path
from decouple import config
from theflow.settings.default import * # noqa
cur_frame = currentframe()
if cur_frame is None:
raise ValueError("Cannot get the current frame.")
this_file = getframeinfo(cur_frame).filename
this_dir = Path(this_file).parent
# change this if your app use a different name
KH_PACKAGE_NAME = "kotaemon_app"
KH_APP_VERSION = config("KH_APP_VERSION", "local")
if not KH_APP_VERSION:
try:
# Caution: This might produce the wrong version
# https://stackoverflow.com/a/59533071
KH_APP_VERSION = version(KH_PACKAGE_NAME)
except Exception as e:
print(f"Failed to get app version: {e}")
# App can be ran from anywhere and it's not trivial to decide where to store app data.
# So let's use the same directory as the flowsetting.py file.
# KH_APP_DATA_DIR = this_dir / "ktem_app_data"
# override app data dir to fit preview data
KH_APP_DATA_DIR = Path("/home/ubuntu/lib-knowledgehub/kotaemon/ktem_app_data")
KH_APP_DATA_DIR.mkdir(parents=True, exist_ok=True)
# User data directory
KH_USER_DATA_DIR = KH_APP_DATA_DIR / "user_data"
KH_USER_DATA_DIR.mkdir(parents=True, exist_ok=True)
# markdowm output directory
KH_MARKDOWN_OUTPUT_DIR = KH_APP_DATA_DIR / "markdown_cache_dir"
KH_MARKDOWN_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# chunks output directory
KH_CHUNKS_OUTPUT_DIR = KH_APP_DATA_DIR / "chunks_cache_dir"
KH_CHUNKS_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# zip output directory
KH_ZIP_OUTPUT_DIR = KH_APP_DATA_DIR / "zip_cache_dir"
KH_ZIP_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# zip input directory
KH_ZIP_INPUT_DIR = KH_APP_DATA_DIR / "zip_cache_dir_in"
KH_ZIP_INPUT_DIR.mkdir(parents=True, exist_ok=True)
# HF models can be big, let's store them in the app data directory so that it's easier
# for users to manage their storage.
# ref: https://huggingface.co./docs/huggingface_hub/en/guides/manage-cache
os.environ["HF_HOME"] = str(KH_APP_DATA_DIR / "huggingface")
os.environ["HF_HUB_CACHE"] = str(KH_APP_DATA_DIR / "huggingface")
# doc directory
KH_DOC_DIR = this_dir / "docs"
KH_MODE = "dev"
KH_FEATURE_USER_MANAGEMENT = False
KH_USER_CAN_SEE_PUBLIC = None
KH_FEATURE_USER_MANAGEMENT_ADMIN = str(
config("KH_FEATURE_USER_MANAGEMENT_ADMIN", default="admin")
)
KH_FEATURE_USER_MANAGEMENT_PASSWORD = str(
config("KH_FEATURE_USER_MANAGEMENT_PASSWORD", default="admin")
)
KH_ENABLE_ALEMBIC = False
KH_DATABASE = f"sqlite:///file:{KH_USER_DATA_DIR / 'sql.db?mode=ro&uri=true'}"
KH_FILESTORAGE_PATH = str(KH_USER_DATA_DIR / "files")
KH_DOCSTORE = {
# "__type__": "kotaemon.storages.ElasticsearchDocumentStore",
# "__type__": "kotaemon.storages.SimpleFileDocumentStore",
"__type__": "kotaemon.storages.LanceDBDocumentStore",
"path": str(KH_USER_DATA_DIR / "docstore"),
}
KH_VECTORSTORE = {
# "__type__": "kotaemon.storages.LanceDBVectorStore",
"__type__": "kotaemon.storages.ChromaVectorStore",
"path": str(KH_USER_DATA_DIR / "vectorstore"),
}
KH_LLMS = {}
KH_EMBEDDINGS = {}
# populate options from config
if config("AZURE_OPENAI_API_KEY", default="") and config(
"AZURE_OPENAI_ENDPOINT", default=""
):
if config("AZURE_OPENAI_CHAT_DEPLOYMENT", default=""):
KH_LLMS["azure"] = {
"spec": {
"__type__": "kotaemon.llms.AzureChatOpenAI",
"temperature": 0,
"azure_endpoint": config("AZURE_OPENAI_ENDPOINT", default=""),
"api_key": config("AZURE_OPENAI_API_KEY", default=""),
"api_version": config("OPENAI_API_VERSION", default="")
or "2024-02-15-preview",
"azure_deployment": config("AZURE_OPENAI_CHAT_DEPLOYMENT", default=""),
"timeout": 20,
},
"default": False,
}
if config("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT", default=""):
KH_EMBEDDINGS["azure"] = {
"spec": {
"__type__": "kotaemon.embeddings.AzureOpenAIEmbeddings",
"azure_endpoint": config("AZURE_OPENAI_ENDPOINT", default=""),
"api_key": config("AZURE_OPENAI_API_KEY", default=""),
"api_version": config("OPENAI_API_VERSION", default="")
or "2024-02-15-preview",
"azure_deployment": config(
"AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT", default=""
),
"timeout": 10,
},
"default": False,
}
if config("OPENAI_API_KEY", default=""):
KH_LLMS["openai"] = {
"spec": {
"__type__": "kotaemon.llms.ChatOpenAI",
"temperature": 0,
"base_url": config("OPENAI_API_BASE", default="")
or "https://api.openai.com/v1",
"api_key": config("OPENAI_API_KEY", default=""),
"model": config("OPENAI_CHAT_MODEL", default="gpt-3.5-turbo"),
"timeout": 20,
},
"default": True,
}
KH_EMBEDDINGS["openai"] = {
"spec": {
"__type__": "kotaemon.embeddings.OpenAIEmbeddings",
"base_url": config("OPENAI_API_BASE", default="https://api.openai.com/v1"),
"api_key": config("OPENAI_API_KEY", default=""),
"model": config(
"OPENAI_EMBEDDINGS_MODEL", default="text-embedding-ada-002"
),
"timeout": 10,
"context_length": 8191,
},
"default": True,
}
if config("LOCAL_MODEL", default=""):
KH_LLMS["ollama"] = {
"spec": {
"__type__": "kotaemon.llms.ChatOpenAI",
"base_url": "http://localhost:11434/v1/",
"model": config("LOCAL_MODEL", default="llama3.1:8b"),
},
"default": False,
}
KH_EMBEDDINGS["ollama"] = {
"spec": {
"__type__": "kotaemon.embeddings.OpenAIEmbeddings",
"base_url": "http://localhost:11434/v1/",
"model": config("LOCAL_MODEL_EMBEDDINGS", default="nomic-embed-text"),
},
"default": False,
}
KH_EMBEDDINGS["local-bge-en"] = {
"spec": {
"__type__": "kotaemon.embeddings.FastEmbedEmbeddings",
"model_name": "BAAI/bge-base-en-v1.5",
},
"default": False,
}
KH_REASONINGS = [
"ktem.reasoning.simple.FullQAPipeline",
"ktem.reasoning.simple.FullDecomposeQAPipeline",
"ktem.reasoning.react.ReactAgentPipeline",
"ktem.reasoning.rewoo.RewooAgentPipeline",
]
KH_REASONINGS_USE_MULTIMODAL = False
KH_VLM_ENDPOINT = "{0}/openai/deployments/{1}/chat/completions?api-version={2}".format(
config("AZURE_OPENAI_ENDPOINT", default=""),
config("OPENAI_VISION_DEPLOYMENT_NAME", default="gpt-4o"),
config("OPENAI_API_VERSION", default=""),
)
SETTINGS_APP: dict[str, dict] = {}
SETTINGS_REASONING = {
"use": {
"name": "Reasoning options",
"value": None,
"choices": [],
"component": "radio",
},
"lang": {
"name": "Language",
"value": "en",
"choices": [("English", "en"), ("Japanese", "ja"), ("Vietnamese", "vi")],
"component": "dropdown",
},
"max_context_length": {
"name": "Max context length (LLM)",
"value": 32000,
"component": "number",
},
}
KH_INDEX_TYPES = [
"ktem.index.file.FileIndex",
"ktem.index.file.graph.GraphRAGIndex",
]
KH_INDICES = [
{
"name": "File",
"config": {
"supported_file_types": (
".png, .jpeg, .jpg, .tiff, .tif, .pdf, .xls, .xlsx, .doc, .docx, "
".pptx, .csv, .html, .mhtml, .txt, .zip"
),
"private": False,
},
"index_type": "ktem.index.file.FileIndex",
},
{
"name": "GraphRAG",
"config": {
"supported_file_types": (
".png, .jpeg, .jpg, .tiff, .tif, .pdf, .xls, .xlsx, .doc, .docx, "
".pptx, .csv, .html, .mhtml, .txt, .zip"
),
"private": False,
},
"index_type": "ktem.index.file.graph.GraphRAGIndex",
},
]