nouamanetazi HF staff commited on
Commit
c731c61
·
1 Parent(s): 25b69c5
app.py CHANGED
@@ -6,39 +6,47 @@ import torch
6
  import numpy as np
7
  from utils.audio import load_spectrograms
8
  from utils.compute_args import compute_args
9
- from utils.tokenize import tokenize, create_dict, sent_to_ix, cmumosei_2, cmumosei_7, pad_feature
 
 
 
 
 
 
 
10
  from model_LA import Model_LA
11
  import gradio as gr
12
 
13
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14
 
15
  # load model
16
- ckpts_path = 'ckpt'
17
  model_name = "Model_LA_e"
18
  # Listing sorted checkpoints
19
- ckpts = sorted(glob.glob(os.path.join(ckpts_path, model_name,'best*')), reverse=True)
20
 
21
  # Load original args
22
- args = torch.load(ckpts[0], map_location=torch.device(device))['args']
23
  args = compute_args(args)
24
  pretrained_emb = np.load("train_glove.npy")
25
- token_to_ix = pickle.load(open("token_to_ix.pkl", "rb"))
26
- state_dict = torch.load(ckpts[0], map_location=torch.device(device))['state_dict']
27
 
28
  net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device)
29
  net.load_state_dict(state_dict)
30
 
 
31
  def inference(source_video, transcription):
32
  # data preprocessing
33
  # text
34
  def clean(w):
35
- return re.sub(
36
- r"([.,'!?\"()*#:;])",
37
- '',
38
- w.lower()
39
- ).replace('-', ' ').replace('/', ' ')
40
 
41
- s = [clean(w) for w in transcription.split() if clean(w) != '']
42
 
43
  # Sound
44
  _, mel, mag = load_spectrograms(source_video)
@@ -55,32 +63,40 @@ def inference(source_video, transcription):
55
  print(f"Processed video shape from {mel.shape} to {V.shape}")
56
 
57
  net.train(False)
58
- x = np.expand_dims(L,axis=0)
59
- y = np.expand_dims(A,axis=0)
60
- z = np.expand_dims(V,axis=0)
61
- x, y, z = torch.from_numpy(x).to(device), torch.from_numpy(y).to(device), torch.from_numpy(z).float().to(device)
 
 
 
 
62
  pred = net(x, y, z).cpu().data.numpy()[0]
63
  # pred = np.exp(pred) / np.sum(np.exp(pred)) # softmax
64
- label_to_ix = ['happy', 'sad', 'angry', 'fear', 'disgust', 'surprise']
65
  # result_dict = {label_to_ix[i]: float(pred[i]) for i in range(len(label_to_ix))}
66
- result_dict = {label_to_ix[i]: float(pred[i])>0 for i in range(len(label_to_ix))}
67
  return result_dict
68
 
69
 
70
- title="Emotion Recognition"
71
- description=""
72
-
73
- examples = [
74
- ['examples/0h-zjBukYpk_2.mp4', "NOW IM NOT EVEN GONNA SUGAR COAT THIS THIS MOVIE FRUSTRATED ME TO SUCH AN EXTREME EXTENT THAT I WAS LOUDLY EXCLAIMING WHY AT THE END OF THE FILM"],
75
- ['examples/0h-zjBukYpk_19.mp4', "NOW OTHER PERFORMANCES ARE BORDERLINE OKAY"],
76
- ['examples/03bSnISJMiM_1.mp4', "IT WAS REALLY GOOD "],
77
- ['examples/03bSnISJMiM_5.mp4', "AND THEY SHOULDVE I GUESS "],
78
- ]
79
-
80
- gr.Interface(inference,
81
- inputs = [gr.inputs.Video(type="avi", source="upload"), "text"],
82
- outputs=["label"],
83
- title=title,
84
- description=description,
85
- examples=examples
86
- ).launch(debug=True)
 
 
 
 
 
6
  import numpy as np
7
  from utils.audio import load_spectrograms
8
  from utils.compute_args import compute_args
9
+ from utils.tokenize import (
10
+ tokenize,
11
+ create_dict,
12
+ sent_to_ix,
13
+ cmumosei_2,
14
+ cmumosei_7,
15
+ pad_feature,
16
+ )
17
  from model_LA import Model_LA
18
  import gradio as gr
19
 
20
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
21
 
22
  # load model
23
+ ckpts_path = "ckpt"
24
  model_name = "Model_LA_e"
25
  # Listing sorted checkpoints
26
+ ckpts = sorted(glob.glob(os.path.join(ckpts_path, model_name, "best*")), reverse=True)
27
 
28
  # Load original args
29
+ args = torch.load(ckpts[0], map_location=torch.device(device))["args"]
30
  args = compute_args(args)
31
  pretrained_emb = np.load("train_glove.npy")
32
+ token_to_ix = pickle.load(open("token_to_ix.pkl", "rb"))
33
+ state_dict = torch.load(ckpts[0], map_location=torch.device(device))["state_dict"]
34
 
35
  net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device)
36
  net.load_state_dict(state_dict)
37
 
38
+
39
  def inference(source_video, transcription):
40
  # data preprocessing
41
  # text
42
  def clean(w):
43
+ return (
44
+ re.sub(r"([.,'!?\"()*#:;])", "", w.lower())
45
+ .replace("-", " ")
46
+ .replace("/", " ")
47
+ )
48
 
49
+ s = [clean(w) for w in transcription.split() if clean(w) != ""]
50
 
51
  # Sound
52
  _, mel, mag = load_spectrograms(source_video)
 
63
  print(f"Processed video shape from {mel.shape} to {V.shape}")
64
 
65
  net.train(False)
66
+ x = np.expand_dims(L, axis=0)
67
+ y = np.expand_dims(A, axis=0)
68
+ z = np.expand_dims(V, axis=0)
69
+ x, y, z = (
70
+ torch.from_numpy(x).to(device),
71
+ torch.from_numpy(y).to(device),
72
+ torch.from_numpy(z).float().to(device),
73
+ )
74
  pred = net(x, y, z).cpu().data.numpy()[0]
75
  # pred = np.exp(pred) / np.sum(np.exp(pred)) # softmax
76
+ label_to_ix = ["happy", "sad", "angry", "fear", "disgust", "surprise"]
77
  # result_dict = {label_to_ix[i]: float(pred[i]) for i in range(len(label_to_ix))}
78
+ result_dict = {label_to_ix[i]: float(pred[i]) > 0 for i in range(len(label_to_ix))}
79
  return result_dict
80
 
81
 
82
+ title = "Emotion Recognition"
83
+ description = ""
84
+
85
+ examples = [
86
+ [
87
+ "examples/0h-zjBukYpk_2.mp4",
88
+ "NOW IM NOT EVEN GONNA SUGAR COAT THIS THIS MOVIE FRUSTRATED ME TO SUCH AN EXTREME EXTENT THAT I WAS LOUDLY EXCLAIMING WHY AT THE END OF THE FILM",
89
+ ],
90
+ ["examples/0h-zjBukYpk_19.mp4", "NOW OTHER PERFORMANCES ARE BORDERLINE OKAY"],
91
+ ["examples/03bSnISJMiM_1.mp4", "IT WAS REALLY GOOD "],
92
+ ["examples/03bSnISJMiM_5.mp4", "AND THEY SHOULDVE I GUESS "],
93
+ ]
94
+
95
+ gr.Interface(
96
+ inference,
97
+ inputs=[gr.inputs.Video(type="avi", source="upload"), "text"],
98
+ outputs=["label"],
99
+ title=title,
100
+ description=description,
101
+ examples=examples,
102
+ ).launch(debug=True)
layers/fc.py CHANGED
@@ -1,7 +1,8 @@
1
  import torch.nn as nn
2
 
 
3
  class FC(nn.Module):
4
- def __init__(self, in_size, out_size, dropout_r=0., use_relu=True):
5
  super(FC, self).__init__()
6
  self.dropout_r = dropout_r
7
  self.use_relu = use_relu
@@ -27,7 +28,7 @@ class FC(nn.Module):
27
 
28
 
29
  class MLP(nn.Module):
30
- def __init__(self, in_size, mid_size, out_size, dropout_r=0., use_relu=True):
31
  super(MLP, self).__init__()
32
 
33
  self.fc = FC(in_size, mid_size, dropout_r=dropout_r, use_relu=use_relu)
 
1
  import torch.nn as nn
2
 
3
+
4
  class FC(nn.Module):
5
+ def __init__(self, in_size, out_size, dropout_r=0.0, use_relu=True):
6
  super(FC, self).__init__()
7
  self.dropout_r = dropout_r
8
  self.use_relu = use_relu
 
28
 
29
 
30
  class MLP(nn.Module):
31
+ def __init__(self, in_size, mid_size, out_size, dropout_r=0.0, use_relu=True):
32
  super(MLP, self).__init__()
33
 
34
  self.fc = FC(in_size, mid_size, dropout_r=dropout_r, use_relu=use_relu)
layers/layer_norm.py CHANGED
@@ -1,6 +1,7 @@
1
  import torch.nn as nn
2
  import torch
3
 
 
4
  class LayerNorm(nn.Module):
5
  def __init__(self, size, eps=1e-6):
6
  super(LayerNorm, self).__init__()
@@ -13,4 +14,3 @@ class LayerNorm(nn.Module):
13
  mean = x.mean(-1, keepdim=True)
14
  std = x.std(-1, keepdim=True)
15
  return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
16
-
 
1
  import torch.nn as nn
2
  import torch
3
 
4
+
5
  class LayerNorm(nn.Module):
6
  def __init__(self, size, eps=1e-6):
7
  super(LayerNorm, self).__init__()
 
14
  mean = x.mean(-1, keepdim=True)
15
  std = x.std(-1, keepdim=True)
16
  return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
 
model_LA.py CHANGED
@@ -10,10 +10,8 @@ from layers.layer_norm import LayerNorm
10
  # ---------- Masking sequence --------
11
  # ------------------------------------
12
  def make_mask(feature):
13
- return (torch.sum(
14
- torch.abs(feature),
15
- dim=-1
16
- ) == 0).unsqueeze(1).unsqueeze(2)
17
 
18
  # ------------------------------
19
  # ---------- Flattening --------
@@ -31,29 +29,23 @@ class AttFlat(nn.Module):
31
  mid_size=args.ff_size,
32
  out_size=flat_glimpse,
33
  dropout_r=args.dropout_r,
34
- use_relu=True
35
  )
36
 
37
  if self.merge:
38
  self.linear_merge = nn.Linear(
39
- args.hidden_size * flat_glimpse,
40
- args.hidden_size * 2
41
  )
42
 
43
  def forward(self, x, x_mask):
44
  att = self.mlp(x)
45
  if x_mask is not None:
46
- att = att.masked_fill(
47
- x_mask.squeeze(1).squeeze(1).unsqueeze(2),
48
- -1e9
49
- )
50
  att = F.softmax(att, dim=1)
51
 
52
  att_list = []
53
  for i in range(self.flat_glimpse):
54
- att_list.append(
55
- torch.sum(att[:, :, i: i + 1] * x, dim=1)
56
- )
57
 
58
  if self.merge:
59
  x_atted = torch.cat(att_list, dim=1)
@@ -63,10 +55,12 @@ class AttFlat(nn.Module):
63
 
64
  return torch.stack(att_list).transpose_(0, 1)
65
 
 
66
  # ------------------------
67
  # ---- Self Attention ----
68
  # ------------------------
69
 
 
70
  class SA(nn.Module):
71
  def __init__(self, args):
72
  super(SA, self).__init__()
@@ -81,13 +75,9 @@ class SA(nn.Module):
81
  self.norm2 = LayerNorm(args.hidden_size)
82
 
83
  def forward(self, y, y_mask):
84
- y = self.norm1(y + self.dropout1(
85
- self.mhatt(y, y, y, y_mask)
86
- ))
87
 
88
- y = self.norm2(y + self.dropout2(
89
- self.ffn(y)
90
- ))
91
 
92
  return y
93
 
@@ -96,6 +86,7 @@ class SA(nn.Module):
96
  # ---- Self Guided Attention ----
97
  # -------------------------------
98
 
 
99
  class SGA(nn.Module):
100
  def __init__(self, args):
101
  super(SGA, self).__init__()
@@ -114,24 +105,20 @@ class SGA(nn.Module):
114
  self.norm3 = LayerNorm(args.hidden_size)
115
 
116
  def forward(self, x, y, x_mask, y_mask):
117
- x = self.norm1(x + self.dropout1(
118
- self.mhatt1(v=x, k=x, q=x, mask=x_mask)
119
- ))
120
 
121
- x = self.norm2(x + self.dropout2(
122
- self.mhatt2(v=y, k=y, q=x, mask=y_mask)
123
- ))
124
 
125
- x = self.norm3(x + self.dropout3(
126
- self.ffn(x)
127
- ))
128
 
129
  return x
130
 
 
131
  # ------------------------------
132
  # ---- Multi-Head Attention ----
133
  # ------------------------------
134
 
 
135
  class MHAtt(nn.Module):
136
  def __init__(self, args):
137
  super(MHAtt, self).__init__()
@@ -146,33 +133,45 @@ class MHAtt(nn.Module):
146
 
147
  def forward(self, v, k, q, mask):
148
  n_batches = q.size(0)
149
- v = self.linear_v(v).view(
150
- n_batches,
151
- -1,
152
- self.args.multi_head,
153
- int(self.args.hidden_size / self.args.multi_head)
154
- ).transpose(1, 2)
155
-
156
- k = self.linear_k(k).view(
157
- n_batches,
158
- -1,
159
- self.args.multi_head,
160
- int(self.args.hidden_size / self.args.multi_head)
161
- ).transpose(1, 2)
162
-
163
- q = self.linear_q(q).view(
164
- n_batches,
165
- -1,
166
- self.args.multi_head,
167
- int(self.args.hidden_size / self.args.multi_head)
168
- ).transpose(1, 2)
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
  atted = self.att(v, k, q, mask)
171
 
172
- atted = atted.transpose(1, 2).contiguous().view(
173
- n_batches,
174
- -1,
175
- self.args.hidden_size
176
  )
177
  atted = self.linear_merge(atted)
178
 
@@ -181,9 +180,7 @@ class MHAtt(nn.Module):
181
  def att(self, value, key, query, mask):
182
  d_k = query.size(-1)
183
 
184
- scores = torch.matmul(
185
- query, key.transpose(-2, -1)
186
- ) / math.sqrt(d_k)
187
 
188
  if mask is not None:
189
  scores = scores.masked_fill(mask, -1e9)
@@ -198,6 +195,7 @@ class MHAtt(nn.Module):
198
  # ---- Feed Forward Nets ----
199
  # ---------------------------
200
 
 
201
  class FFN(nn.Module):
202
  def __init__(self, args):
203
  super(FFN, self).__init__()
@@ -207,12 +205,13 @@ class FFN(nn.Module):
207
  mid_size=args.ff_size,
208
  out_size=args.hidden_size,
209
  dropout_r=args.dropout_r,
210
- use_relu=True
211
  )
212
 
213
  def forward(self, x):
214
  return self.mlp(x)
215
 
 
216
  # ---------------------------
217
  # ---- FF + norm -----------
218
  # ---------------------------
@@ -231,7 +230,6 @@ class FFAndNorm(nn.Module):
231
  return x
232
 
233
 
234
-
235
  class Block(nn.Module):
236
  def __init__(self, args, i):
237
  super(Block, self).__init__()
@@ -239,7 +237,7 @@ class Block(nn.Module):
239
  self.sa1 = SA(args)
240
  self.sa3 = SGA(args)
241
 
242
- self.last = (i == args.layer-1)
243
  if not self.last:
244
  self.att_lang = AttFlat(args, args.lang_seq_len, merge=False)
245
  self.att_audio = AttFlat(args, args.audio_seq_len, merge=False)
@@ -261,8 +259,7 @@ class Block(nn.Module):
261
  ax = self.att_lang(x, x_mask)
262
  ay = self.att_audio(y, y_mask)
263
 
264
- return self.norm_l(x + self.dropout(ax)), \
265
- self.norm_i(y + self.dropout(ay))
266
 
267
 
268
  class Model_LA(nn.Module):
@@ -273,8 +270,7 @@ class Model_LA(nn.Module):
273
 
274
  # LSTM
275
  self.embedding = nn.Embedding(
276
- num_embeddings=vocab_size,
277
- embedding_dim=args.word_embed_size
278
  )
279
 
280
  # Loading the GloVe embedding weights
@@ -284,7 +280,7 @@ class Model_LA(nn.Module):
284
  input_size=args.word_embed_size,
285
  hidden_size=args.hidden_size,
286
  num_layers=1,
287
- batch_first=True
288
  )
289
 
290
  # self.lstm_y = nn.LSTM(
@@ -301,7 +297,7 @@ class Model_LA(nn.Module):
301
  self.enc_list = nn.ModuleList([Block(args, i) for i in range(args.layer)])
302
 
303
  # Flattenting features before proj
304
- self.attflat_img = AttFlat(args, 1, merge=True)
305
  self.attflat_lang = AttFlat(args, 1, merge=True)
306
 
307
  # Classification layers
@@ -325,19 +321,13 @@ class Model_LA(nn.Module):
325
  x_m, x_y = x_mask, y_mask
326
  x, y = dec(x, x_m, y, x_y)
327
 
328
- x = self.attflat_lang(
329
- x,
330
- None
331
- )
332
 
333
- y = self.attflat_img(
334
- y,
335
- None
336
- )
337
 
338
  # Classification layers
339
  proj_feat = x + y
340
  proj_feat = self.proj_norm(proj_feat)
341
  ans = self.proj(proj_feat)
342
 
343
- return ans
 
10
  # ---------- Masking sequence --------
11
  # ------------------------------------
12
  def make_mask(feature):
13
+ return (torch.sum(torch.abs(feature), dim=-1) == 0).unsqueeze(1).unsqueeze(2)
14
+
 
 
15
 
16
  # ------------------------------
17
  # ---------- Flattening --------
 
29
  mid_size=args.ff_size,
30
  out_size=flat_glimpse,
31
  dropout_r=args.dropout_r,
32
+ use_relu=True,
33
  )
34
 
35
  if self.merge:
36
  self.linear_merge = nn.Linear(
37
+ args.hidden_size * flat_glimpse, args.hidden_size * 2
 
38
  )
39
 
40
  def forward(self, x, x_mask):
41
  att = self.mlp(x)
42
  if x_mask is not None:
43
+ att = att.masked_fill(x_mask.squeeze(1).squeeze(1).unsqueeze(2), -1e9)
 
 
 
44
  att = F.softmax(att, dim=1)
45
 
46
  att_list = []
47
  for i in range(self.flat_glimpse):
48
+ att_list.append(torch.sum(att[:, :, i : i + 1] * x, dim=1))
 
 
49
 
50
  if self.merge:
51
  x_atted = torch.cat(att_list, dim=1)
 
55
 
56
  return torch.stack(att_list).transpose_(0, 1)
57
 
58
+
59
  # ------------------------
60
  # ---- Self Attention ----
61
  # ------------------------
62
 
63
+
64
  class SA(nn.Module):
65
  def __init__(self, args):
66
  super(SA, self).__init__()
 
75
  self.norm2 = LayerNorm(args.hidden_size)
76
 
77
  def forward(self, y, y_mask):
78
+ y = self.norm1(y + self.dropout1(self.mhatt(y, y, y, y_mask)))
 
 
79
 
80
+ y = self.norm2(y + self.dropout2(self.ffn(y)))
 
 
81
 
82
  return y
83
 
 
86
  # ---- Self Guided Attention ----
87
  # -------------------------------
88
 
89
+
90
  class SGA(nn.Module):
91
  def __init__(self, args):
92
  super(SGA, self).__init__()
 
105
  self.norm3 = LayerNorm(args.hidden_size)
106
 
107
  def forward(self, x, y, x_mask, y_mask):
108
+ x = self.norm1(x + self.dropout1(self.mhatt1(v=x, k=x, q=x, mask=x_mask)))
 
 
109
 
110
+ x = self.norm2(x + self.dropout2(self.mhatt2(v=y, k=y, q=x, mask=y_mask)))
 
 
111
 
112
+ x = self.norm3(x + self.dropout3(self.ffn(x)))
 
 
113
 
114
  return x
115
 
116
+
117
  # ------------------------------
118
  # ---- Multi-Head Attention ----
119
  # ------------------------------
120
 
121
+
122
  class MHAtt(nn.Module):
123
  def __init__(self, args):
124
  super(MHAtt, self).__init__()
 
133
 
134
  def forward(self, v, k, q, mask):
135
  n_batches = q.size(0)
136
+ v = (
137
+ self.linear_v(v)
138
+ .view(
139
+ n_batches,
140
+ -1,
141
+ self.args.multi_head,
142
+ int(self.args.hidden_size / self.args.multi_head),
143
+ )
144
+ .transpose(1, 2)
145
+ )
146
+
147
+ k = (
148
+ self.linear_k(k)
149
+ .view(
150
+ n_batches,
151
+ -1,
152
+ self.args.multi_head,
153
+ int(self.args.hidden_size / self.args.multi_head),
154
+ )
155
+ .transpose(1, 2)
156
+ )
157
+
158
+ q = (
159
+ self.linear_q(q)
160
+ .view(
161
+ n_batches,
162
+ -1,
163
+ self.args.multi_head,
164
+ int(self.args.hidden_size / self.args.multi_head),
165
+ )
166
+ .transpose(1, 2)
167
+ )
168
 
169
  atted = self.att(v, k, q, mask)
170
 
171
+ atted = (
172
+ atted.transpose(1, 2)
173
+ .contiguous()
174
+ .view(n_batches, -1, self.args.hidden_size)
175
  )
176
  atted = self.linear_merge(atted)
177
 
 
180
  def att(self, value, key, query, mask):
181
  d_k = query.size(-1)
182
 
183
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
 
 
184
 
185
  if mask is not None:
186
  scores = scores.masked_fill(mask, -1e9)
 
195
  # ---- Feed Forward Nets ----
196
  # ---------------------------
197
 
198
+
199
  class FFN(nn.Module):
200
  def __init__(self, args):
201
  super(FFN, self).__init__()
 
205
  mid_size=args.ff_size,
206
  out_size=args.hidden_size,
207
  dropout_r=args.dropout_r,
208
+ use_relu=True,
209
  )
210
 
211
  def forward(self, x):
212
  return self.mlp(x)
213
 
214
+
215
  # ---------------------------
216
  # ---- FF + norm -----------
217
  # ---------------------------
 
230
  return x
231
 
232
 
 
233
  class Block(nn.Module):
234
  def __init__(self, args, i):
235
  super(Block, self).__init__()
 
237
  self.sa1 = SA(args)
238
  self.sa3 = SGA(args)
239
 
240
+ self.last = i == args.layer - 1
241
  if not self.last:
242
  self.att_lang = AttFlat(args, args.lang_seq_len, merge=False)
243
  self.att_audio = AttFlat(args, args.audio_seq_len, merge=False)
 
259
  ax = self.att_lang(x, x_mask)
260
  ay = self.att_audio(y, y_mask)
261
 
262
+ return self.norm_l(x + self.dropout(ax)), self.norm_i(y + self.dropout(ay))
 
263
 
264
 
265
  class Model_LA(nn.Module):
 
270
 
271
  # LSTM
272
  self.embedding = nn.Embedding(
273
+ num_embeddings=vocab_size, embedding_dim=args.word_embed_size
 
274
  )
275
 
276
  # Loading the GloVe embedding weights
 
280
  input_size=args.word_embed_size,
281
  hidden_size=args.hidden_size,
282
  num_layers=1,
283
+ batch_first=True,
284
  )
285
 
286
  # self.lstm_y = nn.LSTM(
 
297
  self.enc_list = nn.ModuleList([Block(args, i) for i in range(args.layer)])
298
 
299
  # Flattenting features before proj
300
+ self.attflat_img = AttFlat(args, 1, merge=True)
301
  self.attflat_lang = AttFlat(args, 1, merge=True)
302
 
303
  # Classification layers
 
321
  x_m, x_y = x_mask, y_mask
322
  x, y = dec(x, x_m, y, x_y)
323
 
324
+ x = self.attflat_lang(x, None)
 
 
 
325
 
326
+ y = self.attflat_img(y, None)
 
 
 
327
 
328
  # Classification layers
329
  proj_feat = x + y
330
  proj_feat = self.proj_norm(proj_feat)
331
  ans = self.proj(proj_feat)
332
 
333
+ return ans
model_LAV.py CHANGED
@@ -10,10 +10,8 @@ from layers.layer_norm import LayerNorm
10
  # ---------- Masking sequence --------
11
  # ------------------------------------
12
  def make_mask(feature):
13
- return (torch.sum(
14
- torch.abs(feature),
15
- dim=-1
16
- ) == 0).unsqueeze(1).unsqueeze(2)
17
 
18
  # ------------------------------
19
  # ---------- Flattening --------
@@ -31,29 +29,23 @@ class AttFlat(nn.Module):
31
  mid_size=args.ff_size,
32
  out_size=flat_glimpse,
33
  dropout_r=args.dropout_r,
34
- use_relu=True
35
  )
36
 
37
  if self.merge:
38
  self.linear_merge = nn.Linear(
39
- args.hidden_size * flat_glimpse,
40
- args.hidden_size * 2
41
  )
42
 
43
  def forward(self, x, x_mask):
44
  att = self.mlp(x)
45
  if x_mask is not None:
46
- att = att.masked_fill(
47
- x_mask.squeeze(1).squeeze(1).unsqueeze(2),
48
- -1e9
49
- )
50
  att = F.softmax(att, dim=1)
51
 
52
  att_list = []
53
  for i in range(self.flat_glimpse):
54
- att_list.append(
55
- torch.sum(att[:, :, i: i + 1] * x, dim=1)
56
- )
57
 
58
  if self.merge:
59
  x_atted = torch.cat(att_list, dim=1)
@@ -63,10 +55,12 @@ class AttFlat(nn.Module):
63
 
64
  return torch.stack(att_list).transpose_(0, 1)
65
 
 
66
  # ------------------------
67
  # ---- Self Attention ----
68
  # ------------------------
69
 
 
70
  class SA(nn.Module):
71
  def __init__(self, args):
72
  super(SA, self).__init__()
@@ -81,13 +75,9 @@ class SA(nn.Module):
81
  self.norm2 = LayerNorm(args.hidden_size)
82
 
83
  def forward(self, y, y_mask):
84
- y = self.norm1(y + self.dropout1(
85
- self.mhatt(y, y, y, y_mask)
86
- ))
87
 
88
- y = self.norm2(y + self.dropout2(
89
- self.ffn(y)
90
- ))
91
 
92
  return y
93
 
@@ -96,6 +86,7 @@ class SA(nn.Module):
96
  # ---- Self Guided Attention ----
97
  # -------------------------------
98
 
 
99
  class SGA(nn.Module):
100
  def __init__(self, args):
101
  super(SGA, self).__init__()
@@ -114,24 +105,20 @@ class SGA(nn.Module):
114
  self.norm3 = LayerNorm(args.hidden_size)
115
 
116
  def forward(self, x, y, x_mask, y_mask):
117
- x = self.norm1(x + self.dropout1(
118
- self.mhatt1(v=x, k=x, q=x, mask=x_mask)
119
- ))
120
 
121
- x = self.norm2(x + self.dropout2(
122
- self.mhatt2(v=y, k=y, q=x, mask=y_mask)
123
- ))
124
 
125
- x = self.norm3(x + self.dropout3(
126
- self.ffn(x)
127
- ))
128
 
129
  return x
130
 
 
131
  # ------------------------------
132
  # ---- Multi-Head Attention ----
133
  # ------------------------------
134
 
 
135
  class MHAtt(nn.Module):
136
  def __init__(self, args):
137
  super(MHAtt, self).__init__()
@@ -146,33 +133,45 @@ class MHAtt(nn.Module):
146
 
147
  def forward(self, v, k, q, mask):
148
  n_batches = q.size(0)
149
- v = self.linear_v(v).view(
150
- n_batches,
151
- -1,
152
- self.args.multi_head,
153
- int(self.args.hidden_size / self.args.multi_head)
154
- ).transpose(1, 2)
155
-
156
- k = self.linear_k(k).view(
157
- n_batches,
158
- -1,
159
- self.args.multi_head,
160
- int(self.args.hidden_size / self.args.multi_head)
161
- ).transpose(1, 2)
162
-
163
- q = self.linear_q(q).view(
164
- n_batches,
165
- -1,
166
- self.args.multi_head,
167
- int(self.args.hidden_size / self.args.multi_head)
168
- ).transpose(1, 2)
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
  atted = self.att(v, k, q, mask)
171
 
172
- atted = atted.transpose(1, 2).contiguous().view(
173
- n_batches,
174
- -1,
175
- self.args.hidden_size
176
  )
177
  atted = self.linear_merge(atted)
178
 
@@ -181,9 +180,7 @@ class MHAtt(nn.Module):
181
  def att(self, value, key, query, mask):
182
  d_k = query.size(-1)
183
 
184
- scores = torch.matmul(
185
- query, key.transpose(-2, -1)
186
- ) / math.sqrt(d_k)
187
 
188
  if mask is not None:
189
  scores = scores.masked_fill(mask, -1e9)
@@ -198,6 +195,7 @@ class MHAtt(nn.Module):
198
  # ---- Feed Forward Nets ----
199
  # ---------------------------
200
 
 
201
  class FFN(nn.Module):
202
  def __init__(self, args):
203
  super(FFN, self).__init__()
@@ -207,12 +205,13 @@ class FFN(nn.Module):
207
  mid_size=args.ff_size,
208
  out_size=args.hidden_size,
209
  dropout_r=args.dropout_r,
210
- use_relu=True
211
  )
212
 
213
  def forward(self, x):
214
  return self.mlp(x)
215
 
 
216
  # ---------------------------
217
  # ---- FF + norm -----------
218
  # ---------------------------
@@ -231,7 +230,6 @@ class FFAndNorm(nn.Module):
231
  return x
232
 
233
 
234
-
235
  class Block(nn.Module):
236
  def __init__(self, args, i):
237
  super(Block, self).__init__()
@@ -240,7 +238,7 @@ class Block(nn.Module):
240
  self.sa2 = SGA(args)
241
  self.sa3 = SGA(args)
242
 
243
- self.last = (i == args.layer-1)
244
  if not self.last:
245
  self.att_lang = AttFlat(args, args.lang_seq_len, merge=False)
246
  self.att_audio = AttFlat(args, args.audio_seq_len, merge=False)
@@ -267,10 +265,11 @@ class Block(nn.Module):
267
  ay = self.att_audio(y, y_mask)
268
  az = self.att_vid(z, y_mask)
269
 
270
- return self.norm_l(x + self.dropout(ax)), \
271
- self.norm_a(y + self.dropout(ay)), \
272
- self.norm_v(z + self.dropout(az))
273
-
 
274
 
275
 
276
  class Model_LAV(nn.Module):
@@ -281,8 +280,7 @@ class Model_LAV(nn.Module):
281
 
282
  # LSTM
283
  self.embedding = nn.Embedding(
284
- num_embeddings=vocab_size,
285
- embedding_dim=args.word_embed_size
286
  )
287
 
288
  # Loading the GloVe embedding weights
@@ -292,7 +290,7 @@ class Model_LAV(nn.Module):
292
  input_size=args.word_embed_size,
293
  hidden_size=args.hidden_size,
294
  num_layers=1,
295
- batch_first=True
296
  )
297
 
298
  # self.lstm_y = nn.LSTM(
@@ -310,8 +308,8 @@ class Model_LAV(nn.Module):
310
  self.enc_list = nn.ModuleList([Block(args, i) for i in range(args.layer)])
311
 
312
  # Flattenting features before proj
313
- self.attflat_ac = AttFlat(args, 1, merge=True)
314
- self.attflat_vid = AttFlat(args, 1, merge=True)
315
  self.attflat_lang = AttFlat(args, 1, merge=True)
316
 
317
  # Classification layers
@@ -329,7 +327,6 @@ class Model_LAV(nn.Module):
329
  y_mask = make_mask(y)
330
  z_mask = make_mask(z)
331
 
332
-
333
  embedding = self.embedding(x)
334
 
335
  x, _ = self.lstm_x(embedding)
@@ -343,25 +340,15 @@ class Model_LAV(nn.Module):
343
  x_m, y_m, z_m = x_mask, y_mask, z_mask
344
  x, y, z = dec(x, x_m, y, y_m, z, z_m)
345
 
346
- x = self.attflat_lang(
347
- x,
348
- None
349
- )
350
-
351
- y = self.attflat_ac(
352
- y,
353
- None
354
- )
355
 
356
- z = self.attflat_vid(
357
- z,
358
- None
359
- )
360
 
 
361
 
362
  # Classification layers
363
  proj_feat = x + y + z
364
  proj_feat = self.proj_norm(proj_feat)
365
  ans = self.proj(proj_feat)
366
 
367
- return ans
 
10
  # ---------- Masking sequence --------
11
  # ------------------------------------
12
  def make_mask(feature):
13
+ return (torch.sum(torch.abs(feature), dim=-1) == 0).unsqueeze(1).unsqueeze(2)
14
+
 
 
15
 
16
  # ------------------------------
17
  # ---------- Flattening --------
 
29
  mid_size=args.ff_size,
30
  out_size=flat_glimpse,
31
  dropout_r=args.dropout_r,
32
+ use_relu=True,
33
  )
34
 
35
  if self.merge:
36
  self.linear_merge = nn.Linear(
37
+ args.hidden_size * flat_glimpse, args.hidden_size * 2
 
38
  )
39
 
40
  def forward(self, x, x_mask):
41
  att = self.mlp(x)
42
  if x_mask is not None:
43
+ att = att.masked_fill(x_mask.squeeze(1).squeeze(1).unsqueeze(2), -1e9)
 
 
 
44
  att = F.softmax(att, dim=1)
45
 
46
  att_list = []
47
  for i in range(self.flat_glimpse):
48
+ att_list.append(torch.sum(att[:, :, i : i + 1] * x, dim=1))
 
 
49
 
50
  if self.merge:
51
  x_atted = torch.cat(att_list, dim=1)
 
55
 
56
  return torch.stack(att_list).transpose_(0, 1)
57
 
58
+
59
  # ------------------------
60
  # ---- Self Attention ----
61
  # ------------------------
62
 
63
+
64
  class SA(nn.Module):
65
  def __init__(self, args):
66
  super(SA, self).__init__()
 
75
  self.norm2 = LayerNorm(args.hidden_size)
76
 
77
  def forward(self, y, y_mask):
78
+ y = self.norm1(y + self.dropout1(self.mhatt(y, y, y, y_mask)))
 
 
79
 
80
+ y = self.norm2(y + self.dropout2(self.ffn(y)))
 
 
81
 
82
  return y
83
 
 
86
  # ---- Self Guided Attention ----
87
  # -------------------------------
88
 
89
+
90
  class SGA(nn.Module):
91
  def __init__(self, args):
92
  super(SGA, self).__init__()
 
105
  self.norm3 = LayerNorm(args.hidden_size)
106
 
107
  def forward(self, x, y, x_mask, y_mask):
108
+ x = self.norm1(x + self.dropout1(self.mhatt1(v=x, k=x, q=x, mask=x_mask)))
 
 
109
 
110
+ x = self.norm2(x + self.dropout2(self.mhatt2(v=y, k=y, q=x, mask=y_mask)))
 
 
111
 
112
+ x = self.norm3(x + self.dropout3(self.ffn(x)))
 
 
113
 
114
  return x
115
 
116
+
117
  # ------------------------------
118
  # ---- Multi-Head Attention ----
119
  # ------------------------------
120
 
121
+
122
  class MHAtt(nn.Module):
123
  def __init__(self, args):
124
  super(MHAtt, self).__init__()
 
133
 
134
  def forward(self, v, k, q, mask):
135
  n_batches = q.size(0)
136
+ v = (
137
+ self.linear_v(v)
138
+ .view(
139
+ n_batches,
140
+ -1,
141
+ self.args.multi_head,
142
+ int(self.args.hidden_size / self.args.multi_head),
143
+ )
144
+ .transpose(1, 2)
145
+ )
146
+
147
+ k = (
148
+ self.linear_k(k)
149
+ .view(
150
+ n_batches,
151
+ -1,
152
+ self.args.multi_head,
153
+ int(self.args.hidden_size / self.args.multi_head),
154
+ )
155
+ .transpose(1, 2)
156
+ )
157
+
158
+ q = (
159
+ self.linear_q(q)
160
+ .view(
161
+ n_batches,
162
+ -1,
163
+ self.args.multi_head,
164
+ int(self.args.hidden_size / self.args.multi_head),
165
+ )
166
+ .transpose(1, 2)
167
+ )
168
 
169
  atted = self.att(v, k, q, mask)
170
 
171
+ atted = (
172
+ atted.transpose(1, 2)
173
+ .contiguous()
174
+ .view(n_batches, -1, self.args.hidden_size)
175
  )
176
  atted = self.linear_merge(atted)
177
 
 
180
  def att(self, value, key, query, mask):
181
  d_k = query.size(-1)
182
 
183
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
 
 
184
 
185
  if mask is not None:
186
  scores = scores.masked_fill(mask, -1e9)
 
195
  # ---- Feed Forward Nets ----
196
  # ---------------------------
197
 
198
+
199
  class FFN(nn.Module):
200
  def __init__(self, args):
201
  super(FFN, self).__init__()
 
205
  mid_size=args.ff_size,
206
  out_size=args.hidden_size,
207
  dropout_r=args.dropout_r,
208
+ use_relu=True,
209
  )
210
 
211
  def forward(self, x):
212
  return self.mlp(x)
213
 
214
+
215
  # ---------------------------
216
  # ---- FF + norm -----------
217
  # ---------------------------
 
230
  return x
231
 
232
 
 
233
  class Block(nn.Module):
234
  def __init__(self, args, i):
235
  super(Block, self).__init__()
 
238
  self.sa2 = SGA(args)
239
  self.sa3 = SGA(args)
240
 
241
+ self.last = i == args.layer - 1
242
  if not self.last:
243
  self.att_lang = AttFlat(args, args.lang_seq_len, merge=False)
244
  self.att_audio = AttFlat(args, args.audio_seq_len, merge=False)
 
265
  ay = self.att_audio(y, y_mask)
266
  az = self.att_vid(z, y_mask)
267
 
268
+ return (
269
+ self.norm_l(x + self.dropout(ax)),
270
+ self.norm_a(y + self.dropout(ay)),
271
+ self.norm_v(z + self.dropout(az)),
272
+ )
273
 
274
 
275
  class Model_LAV(nn.Module):
 
280
 
281
  # LSTM
282
  self.embedding = nn.Embedding(
283
+ num_embeddings=vocab_size, embedding_dim=args.word_embed_size
 
284
  )
285
 
286
  # Loading the GloVe embedding weights
 
290
  input_size=args.word_embed_size,
291
  hidden_size=args.hidden_size,
292
  num_layers=1,
293
+ batch_first=True,
294
  )
295
 
296
  # self.lstm_y = nn.LSTM(
 
308
  self.enc_list = nn.ModuleList([Block(args, i) for i in range(args.layer)])
309
 
310
  # Flattenting features before proj
311
+ self.attflat_ac = AttFlat(args, 1, merge=True)
312
+ self.attflat_vid = AttFlat(args, 1, merge=True)
313
  self.attflat_lang = AttFlat(args, 1, merge=True)
314
 
315
  # Classification layers
 
327
  y_mask = make_mask(y)
328
  z_mask = make_mask(z)
329
 
 
330
  embedding = self.embedding(x)
331
 
332
  x, _ = self.lstm_x(embedding)
 
340
  x_m, y_m, z_m = x_mask, y_mask, z_mask
341
  x, y, z = dec(x, x_m, y, y_m, z, z_m)
342
 
343
+ x = self.attflat_lang(x, None)
 
 
 
 
 
 
 
 
344
 
345
+ y = self.attflat_ac(y, None)
 
 
 
346
 
347
+ z = self.attflat_vid(z, None)
348
 
349
  # Classification layers
350
  proj_feat = x + y + z
351
  proj_feat = self.proj_norm(proj_feat)
352
  ans = self.proj(proj_feat)
353
 
354
+ return ans
utils/audio.py CHANGED
@@ -1,24 +1,26 @@
1
  # -*- coding: utf-8 -*-
2
- #/usr/bin/python2
3
- '''
4
  By kyubyong park. [email protected].
5
  https://www.github.com/kyubyong/dc_tts
6
- '''
7
  from __future__ import print_function, division
8
 
9
  import numpy as np
10
  import librosa
11
  import os, copy
12
  import matplotlib
13
- matplotlib.use('pdf')
 
14
  import matplotlib.pyplot as plt
15
  from scipy import signal
16
 
17
  from .audio_params import Hyperparams as hp
18
  import tensorflow as tf
19
 
 
20
  def get_spectrograms(fpath):
21
- '''Parse the wave file in `fpath` and
22
  Returns normalized melspectrogram and linear spectrogram.
23
 
24
  Args:
@@ -27,7 +29,7 @@ def get_spectrograms(fpath):
27
  Returns:
28
  mel: A 2d array of shape (T, n_mels) and dtype of float32.
29
  mag: A 2d array of shape (T, 1+n_fft/2) and dtype of float32.
30
- '''
31
  # Loading sound file
32
  y, sr = librosa.load(fpath, sr=hp.sr)
33
 
@@ -38,10 +40,9 @@ def get_spectrograms(fpath):
38
  y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1])
39
 
40
  # stft
41
- linear = librosa.stft(y=y,
42
- n_fft=hp.n_fft,
43
- hop_length=hp.hop_length,
44
- win_length=hp.win_length)
45
 
46
  # magnitude spectrogram
47
  mag = np.abs(linear) # (1+n_fft//2, T)
@@ -64,15 +65,16 @@ def get_spectrograms(fpath):
64
 
65
  return mel, mag
66
 
 
67
  def spectrogram2wav(mag):
68
- '''# Generate wave file from linear magnitude spectrogram
69
 
70
  Args:
71
  mag: A numpy array of (T, 1+n_fft//2)
72
 
73
  Returns:
74
  wav: A 1-D numpy array.
75
- '''
76
  # transpose
77
  mag = mag.T
78
 
@@ -83,7 +85,7 @@ def spectrogram2wav(mag):
83
  mag = np.power(10.0, mag * 0.05)
84
 
85
  # wav reconstruction
86
- wav = griffin_lim(mag**hp.power)
87
 
88
  # de-preemphasis
89
  wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
@@ -93,8 +95,9 @@ def spectrogram2wav(mag):
93
 
94
  return wav.astype(np.float32)
95
 
 
96
  def griffin_lim(spectrogram):
97
- '''Applies Griffin-Lim's raw.'''
98
  X_best = copy.deepcopy(spectrogram)
99
  for i in range(hp.n_iter):
100
  X_t = invert_spectrogram(X_best)
@@ -106,12 +109,16 @@ def griffin_lim(spectrogram):
106
 
107
  return y
108
 
 
109
  def invert_spectrogram(spectrogram):
110
- '''Applies inverse fft.
111
  Args:
112
  spectrogram: [1+n_fft//2, t]
113
- '''
114
- return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
 
 
 
115
 
116
  def plot_alignment(alignment, gs, dir=hp.logdir):
117
  """Plots the alignment.
@@ -121,32 +128,43 @@ def plot_alignment(alignment, gs, dir=hp.logdir):
121
  gs: (int) global step.
122
  dir: Output path.
123
  """
124
- if not os.path.exists(dir): os.mkdir(dir)
 
125
 
126
  fig, ax = plt.subplots()
127
  im = ax.imshow(alignment)
128
 
129
  fig.colorbar(im)
130
- plt.title('{} Steps'.format(gs))
131
- plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
132
  plt.close(fig)
133
 
 
134
  def guided_attention(g=0.2):
135
- '''Guided attention. Refer to page 3 on the paper.'''
136
  W = np.zeros((hp.max_N, hp.max_T), dtype=np.float32)
137
  for n_pos in range(W.shape[0]):
138
  for t_pos in range(W.shape[1]):
139
- W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(hp.max_T) - n_pos / float(hp.max_N)) ** 2 / (2 * g * g))
 
 
 
140
  return W
141
 
142
- def learning_rate_decay(init_lr, global_step, warmup_steps = 4000.0):
143
- '''Noam scheme from tensor2tensor'''
 
144
  step = tf.to_float(global_step + 1)
145
- return init_lr * warmup_steps**0.5 * tf.minimum(step * warmup_steps**-1.5, step**-0.5)
 
 
 
 
 
146
 
147
  def load_spectrograms(fpath):
148
- '''Read the wave file in `fpath`
149
- and extracts spectrograms'''
150
 
151
  fname = os.path.basename(fpath)
152
  mel, mag = get_spectrograms(fpath)
@@ -158,6 +176,5 @@ def load_spectrograms(fpath):
158
  mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode="constant")
159
 
160
  # Reduction
161
- mel = mel[::hp.r, :]
162
  return fname, mel, mag
163
-
 
1
  # -*- coding: utf-8 -*-
2
+ # /usr/bin/python2
3
+ """
4
  By kyubyong park. [email protected].
5
  https://www.github.com/kyubyong/dc_tts
6
+ """
7
  from __future__ import print_function, division
8
 
9
  import numpy as np
10
  import librosa
11
  import os, copy
12
  import matplotlib
13
+
14
+ matplotlib.use("pdf")
15
  import matplotlib.pyplot as plt
16
  from scipy import signal
17
 
18
  from .audio_params import Hyperparams as hp
19
  import tensorflow as tf
20
 
21
+
22
  def get_spectrograms(fpath):
23
+ """Parse the wave file in `fpath` and
24
  Returns normalized melspectrogram and linear spectrogram.
25
 
26
  Args:
 
29
  Returns:
30
  mel: A 2d array of shape (T, n_mels) and dtype of float32.
31
  mag: A 2d array of shape (T, 1+n_fft/2) and dtype of float32.
32
+ """
33
  # Loading sound file
34
  y, sr = librosa.load(fpath, sr=hp.sr)
35
 
 
40
  y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1])
41
 
42
  # stft
43
+ linear = librosa.stft(
44
+ y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length
45
+ )
 
46
 
47
  # magnitude spectrogram
48
  mag = np.abs(linear) # (1+n_fft//2, T)
 
65
 
66
  return mel, mag
67
 
68
+
69
  def spectrogram2wav(mag):
70
+ """# Generate wave file from linear magnitude spectrogram
71
 
72
  Args:
73
  mag: A numpy array of (T, 1+n_fft//2)
74
 
75
  Returns:
76
  wav: A 1-D numpy array.
77
+ """
78
  # transpose
79
  mag = mag.T
80
 
 
85
  mag = np.power(10.0, mag * 0.05)
86
 
87
  # wav reconstruction
88
+ wav = griffin_lim(mag ** hp.power)
89
 
90
  # de-preemphasis
91
  wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
 
95
 
96
  return wav.astype(np.float32)
97
 
98
+
99
  def griffin_lim(spectrogram):
100
+ """Applies Griffin-Lim's raw."""
101
  X_best = copy.deepcopy(spectrogram)
102
  for i in range(hp.n_iter):
103
  X_t = invert_spectrogram(X_best)
 
109
 
110
  return y
111
 
112
+
113
  def invert_spectrogram(spectrogram):
114
+ """Applies inverse fft.
115
  Args:
116
  spectrogram: [1+n_fft//2, t]
117
+ """
118
+ return librosa.istft(
119
+ spectrogram, hp.hop_length, win_length=hp.win_length, window="hann"
120
+ )
121
+
122
 
123
  def plot_alignment(alignment, gs, dir=hp.logdir):
124
  """Plots the alignment.
 
128
  gs: (int) global step.
129
  dir: Output path.
130
  """
131
+ if not os.path.exists(dir):
132
+ os.mkdir(dir)
133
 
134
  fig, ax = plt.subplots()
135
  im = ax.imshow(alignment)
136
 
137
  fig.colorbar(im)
138
+ plt.title("{} Steps".format(gs))
139
+ plt.savefig("{}/alignment_{}.png".format(dir, gs), format="png")
140
  plt.close(fig)
141
 
142
+
143
  def guided_attention(g=0.2):
144
+ """Guided attention. Refer to page 3 on the paper."""
145
  W = np.zeros((hp.max_N, hp.max_T), dtype=np.float32)
146
  for n_pos in range(W.shape[0]):
147
  for t_pos in range(W.shape[1]):
148
+ W[n_pos, t_pos] = 1 - np.exp(
149
+ -((t_pos / float(hp.max_T) - n_pos / float(hp.max_N)) ** 2)
150
+ / (2 * g * g)
151
+ )
152
  return W
153
 
154
+
155
+ def learning_rate_decay(init_lr, global_step, warmup_steps=4000.0):
156
+ """Noam scheme from tensor2tensor"""
157
  step = tf.to_float(global_step + 1)
158
+ return (
159
+ init_lr
160
+ * warmup_steps ** 0.5
161
+ * tf.minimum(step * warmup_steps ** -1.5, step ** -0.5)
162
+ )
163
+
164
 
165
  def load_spectrograms(fpath):
166
+ """Read the wave file in `fpath`
167
+ and extracts spectrograms"""
168
 
169
  fname = os.path.basename(fpath)
170
  mel, mag = get_spectrograms(fpath)
 
176
  mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode="constant")
177
 
178
  # Reduction
179
+ mel = mel[:: hp.r, :]
180
  return fname, mel, mag
 
utils/audio_params.py CHANGED
@@ -1,14 +1,19 @@
1
  # -*- coding: utf-8 -*-
2
- #/usr/bin/python2
3
- '''
4
  By kyubyong park. [email protected].
5
  https://www.github.com/kyubyong/dc_tts
6
- '''
 
 
7
  class Hyperparams:
8
- '''Hyper parameters'''
 
9
  # pipeline
10
- prepro = True # if True, run `python prepro.py` first before running `python train.py`.
11
-
 
 
12
  # signal processing
13
  sr = 22050 # Sampling rate.
14
  n_fft = 2048 # fft points (samples)
@@ -19,29 +24,29 @@ class Hyperparams:
19
  n_mels = 80 # Number of Mel banks to generate
20
  power = 1.5 # Exponent for amplifying the predicted magnitude
21
  n_iter = 50 # Number of inversion iterations
22
- preemphasis = .97
23
  max_db = 100
24
  ref_db = 20
25
 
26
  # Model
27
- r = 4 # Reduction factor. Do not change this.
28
  dropout_rate = 0.05
29
- e = 128 # == embedding
30
- d = 256 # == hidden units of Text2Mel
31
- c = 512 # == hidden units of SSRN
32
  attention_win_size = 3
33
 
34
  # data
35
  data = "/data/private/voice/LJSpeech-1.0"
36
  # data = "/data/private/voice/kate"
37
- test_data = 'harvard_sentences.txt'
38
- vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # P: Padding, E: EOS.
39
- max_N = 180 # Maximum number of characters.
40
- max_T = 210 # Maximum number of mel frames.
41
 
42
  # training scheme
43
- lr = 0.001 # Initial learning rate.
44
  logdir = "logdir/LJ01"
45
- sampledir = 'samples'
46
- B = 32 # batch size
47
  num_iterations = 2000000
 
1
  # -*- coding: utf-8 -*-
2
+ # /usr/bin/python2
3
+ """
4
  By kyubyong park. [email protected].
5
  https://www.github.com/kyubyong/dc_tts
6
+ """
7
+
8
+
9
  class Hyperparams:
10
+ """Hyper parameters"""
11
+
12
  # pipeline
13
+ prepro = (
14
+ True # if True, run `python prepro.py` first before running `python train.py`.
15
+ )
16
+
17
  # signal processing
18
  sr = 22050 # Sampling rate.
19
  n_fft = 2048 # fft points (samples)
 
24
  n_mels = 80 # Number of Mel banks to generate
25
  power = 1.5 # Exponent for amplifying the predicted magnitude
26
  n_iter = 50 # Number of inversion iterations
27
+ preemphasis = 0.97
28
  max_db = 100
29
  ref_db = 20
30
 
31
  # Model
32
+ r = 4 # Reduction factor. Do not change this.
33
  dropout_rate = 0.05
34
+ e = 128 # == embedding
35
+ d = 256 # == hidden units of Text2Mel
36
+ c = 512 # == hidden units of SSRN
37
  attention_win_size = 3
38
 
39
  # data
40
  data = "/data/private/voice/LJSpeech-1.0"
41
  # data = "/data/private/voice/kate"
42
+ test_data = "harvard_sentences.txt"
43
+ vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # P: Padding, E: EOS.
44
+ max_N = 180 # Maximum number of characters.
45
+ max_T = 210 # Maximum number of mel frames.
46
 
47
  # training scheme
48
+ lr = 0.001 # Initial learning rate.
49
  logdir = "logdir/LJ01"
50
+ sampledir = "samples"
51
+ B = 32 # batch size
52
  num_iterations = 2000000
utils/compute_args.py CHANGED
@@ -3,26 +3,39 @@ import torch
3
 
4
  def compute_args(args):
5
  # DataLoader
6
- if not hasattr(args, 'dataset'): # fix for previous version
7
- args.dataset = 'MOSEI'
8
 
9
- if args.dataset == "MOSEI": args.dataloader = 'Mosei_Dataset'
10
- if args.dataset == "MELD": args.dataloader = 'Meld_Dataset'
 
 
11
 
12
  # Loss function to use
13
- if args.dataset == 'MOSEI' and args.task == 'sentiment': args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
14
- if args.dataset == 'MOSEI' and args.task == 'emotion': args.loss_fn = torch.nn.BCEWithLogitsLoss(reduction="sum")
15
- if args.dataset == 'MELD': args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
 
 
 
16
 
17
  # Answer size
18
- if args.dataset == 'MOSEI' and args.task == "sentiment": args.ans_size = 7
19
- if args.dataset == 'MOSEI' and args.task == "sentiment" and args.task_binary: args.ans_size = 2
20
- if args.dataset == 'MOSEI' and args.task == "emotion": args.ans_size = 6
21
- if args.dataset == 'MELD' and args.task == "emotion": args.ans_size = 7
22
- if args.dataset == 'MELD' and args.task == "sentiment": args.ans_size = 3
 
 
 
 
 
23
 
24
- if args.dataset == 'MOSEI': args.pred_func = "amax"
25
- if args.dataset == 'MOSEI' and args.task == "emotion": args.pred_func = "multi_label"
26
- if args.dataset == 'MELD': args.pred_func = "amax"
 
 
 
27
 
28
  return args
 
3
 
4
  def compute_args(args):
5
  # DataLoader
6
+ if not hasattr(args, "dataset"): # fix for previous version
7
+ args.dataset = "MOSEI"
8
 
9
+ if args.dataset == "MOSEI":
10
+ args.dataloader = "Mosei_Dataset"
11
+ if args.dataset == "MELD":
12
+ args.dataloader = "Meld_Dataset"
13
 
14
  # Loss function to use
15
+ if args.dataset == "MOSEI" and args.task == "sentiment":
16
+ args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
17
+ if args.dataset == "MOSEI" and args.task == "emotion":
18
+ args.loss_fn = torch.nn.BCEWithLogitsLoss(reduction="sum")
19
+ if args.dataset == "MELD":
20
+ args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
21
 
22
  # Answer size
23
+ if args.dataset == "MOSEI" and args.task == "sentiment":
24
+ args.ans_size = 7
25
+ if args.dataset == "MOSEI" and args.task == "sentiment" and args.task_binary:
26
+ args.ans_size = 2
27
+ if args.dataset == "MOSEI" and args.task == "emotion":
28
+ args.ans_size = 6
29
+ if args.dataset == "MELD" and args.task == "emotion":
30
+ args.ans_size = 7
31
+ if args.dataset == "MELD" and args.task == "sentiment":
32
+ args.ans_size = 3
33
 
34
+ if args.dataset == "MOSEI":
35
+ args.pred_func = "amax"
36
+ if args.dataset == "MOSEI" and args.task == "emotion":
37
+ args.pred_func = "multi_label"
38
+ if args.dataset == "MELD":
39
+ args.pred_func = "amax"
40
 
41
  return args
utils/plot.py CHANGED
@@ -10,4 +10,4 @@
10
  # maxfreq = n.max()
11
  # # Set a clean upper y-axis limit.
12
  # plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)
13
- # plt.show()
 
10
  # maxfreq = n.max()
11
  # # Set a clean upper y-axis limit.
12
  # plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)
13
+ # plt.show()
utils/pred_func.py CHANGED
@@ -6,4 +6,4 @@ def amax(x):
6
 
7
 
8
  def multi_label(x):
9
- return (x > 0)
 
6
 
7
 
8
  def multi_label(x):
9
+ return x > 0
utils/tokenize.py CHANGED
@@ -6,38 +6,37 @@ import numpy as np
6
  import os
7
  import pickle
8
 
 
9
  def clean(w):
10
- return re.sub(
11
- r"([.,'!?\"()*#:;])",
12
- '',
13
- w.lower()
14
- ).replace('-', ' ').replace('/', ' ')
15
 
16
 
17
  def tokenize(key_to_word):
18
  key_to_sentence = {}
19
  for k, v in key_to_word.items():
20
- key_to_sentence[k] = [clean(w) for w in v if clean(w) != '']
21
  return key_to_sentence
22
 
23
 
24
  def create_dict(key_to_sentence, dataroot, use_glove=True):
25
- token_file = dataroot+"/token_to_ix.pkl"
26
- glove_file = dataroot+"/train_glove.npy"
27
  if os.path.exists(glove_file) and os.path.exists(token_file):
28
  print("Loading train language files")
29
  return pickle.load(open(token_file, "rb")), np.load(glove_file)
30
 
31
  print("Creating train language files")
32
  token_to_ix = {
33
- 'UNK': 1,
34
  }
35
 
36
  spacy_tool = None
37
  pretrained_emb = []
38
  if use_glove:
39
  spacy_tool = en_vectors_web_lg.load()
40
- pretrained_emb.append(spacy_tool('UNK').vector)
41
 
42
  for k, v in key_to_sentence.items():
43
  for word in v:
@@ -51,6 +50,7 @@ def create_dict(key_to_sentence, dataroot, use_glove=True):
51
  pickle.dump(token_to_ix, open(token_file, "wb"))
52
  return token_to_ix, pretrained_emb
53
 
 
54
  def sent_to_ix(s, token_to_ix, max_token=100):
55
  ques_ix = np.zeros(max_token, np.int64)
56
 
@@ -58,7 +58,7 @@ def sent_to_ix(s, token_to_ix, max_token=100):
58
  if word in token_to_ix:
59
  ques_ix[ix] = token_to_ix[word]
60
  else:
61
- ques_ix[ix] = token_to_ix['UNK']
62
 
63
  if ix + 1 == max_token:
64
  break
@@ -83,21 +83,20 @@ def cmumosei_7(a):
83
  res = 6
84
  return res
85
 
 
86
  def cmumosei_2(a):
87
  if a < 0:
88
  return 0
89
  if a >= 0:
90
  return 1
91
 
 
92
  def pad_feature(feat, max_len):
93
  if feat.shape[0] > max_len:
94
  feat = feat[:max_len]
95
 
96
  feat = np.pad(
97
- feat,
98
- ((0, max_len - feat.shape[0]), (0, 0)),
99
- mode='constant',
100
- constant_values=0
101
  )
102
 
103
  return feat
 
6
  import os
7
  import pickle
8
 
9
+
10
  def clean(w):
11
+ return (
12
+ re.sub(r"([.,'!?\"()*#:;])", "", w.lower()).replace("-", " ").replace("/", " ")
13
+ )
 
 
14
 
15
 
16
  def tokenize(key_to_word):
17
  key_to_sentence = {}
18
  for k, v in key_to_word.items():
19
+ key_to_sentence[k] = [clean(w) for w in v if clean(w) != ""]
20
  return key_to_sentence
21
 
22
 
23
  def create_dict(key_to_sentence, dataroot, use_glove=True):
24
+ token_file = dataroot + "/token_to_ix.pkl"
25
+ glove_file = dataroot + "/train_glove.npy"
26
  if os.path.exists(glove_file) and os.path.exists(token_file):
27
  print("Loading train language files")
28
  return pickle.load(open(token_file, "rb")), np.load(glove_file)
29
 
30
  print("Creating train language files")
31
  token_to_ix = {
32
+ "UNK": 1,
33
  }
34
 
35
  spacy_tool = None
36
  pretrained_emb = []
37
  if use_glove:
38
  spacy_tool = en_vectors_web_lg.load()
39
+ pretrained_emb.append(spacy_tool("UNK").vector)
40
 
41
  for k, v in key_to_sentence.items():
42
  for word in v:
 
50
  pickle.dump(token_to_ix, open(token_file, "wb"))
51
  return token_to_ix, pretrained_emb
52
 
53
+
54
  def sent_to_ix(s, token_to_ix, max_token=100):
55
  ques_ix = np.zeros(max_token, np.int64)
56
 
 
58
  if word in token_to_ix:
59
  ques_ix[ix] = token_to_ix[word]
60
  else:
61
+ ques_ix[ix] = token_to_ix["UNK"]
62
 
63
  if ix + 1 == max_token:
64
  break
 
83
  res = 6
84
  return res
85
 
86
+
87
  def cmumosei_2(a):
88
  if a < 0:
89
  return 0
90
  if a >= 0:
91
  return 1
92
 
93
+
94
  def pad_feature(feat, max_len):
95
  if feat.shape[0] > max_len:
96
  feat = feat[:max_len]
97
 
98
  feat = np.pad(
99
+ feat, ((0, max_len - feat.shape[0]), (0, 0)), mode="constant", constant_values=0
 
 
 
100
  )
101
 
102
  return feat