|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
from PIL import Image |
|
torch.set_float32_matmul_precision(['high', 'highest'][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True) |
|
birefnet.to("cuda") |
|
transform_image = transforms.Compose([ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
|
|
@spaces.GPU |
|
def fn(image): |
|
im = load_img(image,output_type="pil") |
|
im = im.convert('RGB') |
|
image_size = im.size |
|
origin = im.copy() |
|
image = load_img(im) |
|
input_images = transform_image(image).unsqueeze(0).to('cuda') |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return (image , origin) |
|
|
|
slider1 = ImageSlider(label="birefnet", type="pil") |
|
slider2 = ImageSlider(label="birefnet", type="pil") |
|
image = gr.Image(label="Upload an image") |
|
text = gr.Textbox(label="Paste an image URL") |
|
|
|
chameleon = Image.open("chameleon.jpg") |
|
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" |
|
tab1 = gr.Interface(fn,inputs= image, outputs= slider1,examples=[chameleon], api_name="image") |
|
tab2 = gr.Interface(fn,inputs= text, outputs= slider2,examples=[url], api_name="text") |
|
|
|
demo = gr.TabbedInterface([tab1,tab2],["image","text"],title="birefnet with image slider") |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |