import gradio as gr import spaces import torch from loadimg import load_img from torchvision import transforms from transformers import AutoModelForImageSegmentation torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) @spaces.GPU def rmbg(image,url): if image is None : image = url image = load_img(image).convert("RGB") image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image rmbg_tab = gr.Interface(fn=rmbg, inputs=["image","text"], outputs=["image"], api_name="rmbg") demo = gr.TabbedInterface( [rmbg_tab], ["remove background"], title="Utilities that require GPU", ) demo.launch()