put sam2 cuda utils in its tab
Browse files
app.py
CHANGED
@@ -20,12 +20,6 @@ def float32_high_matmul_precision():
|
|
20 |
finally:
|
21 |
torch.set_float32_matmul_precision("highest")
|
22 |
|
23 |
-
# use bfloat16 for the entire notebook
|
24 |
-
torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
|
25 |
-
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
26 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
27 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
28 |
-
torch.backends.cudnn.allow_tf32 = True
|
29 |
|
30 |
pipe = FluxFillPipeline.from_pretrained(
|
31 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
@@ -140,6 +134,12 @@ def rmbg(image=None, url=None):
|
|
140 |
|
141 |
|
142 |
def mask_generation(image=None, d=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
d = eval(d) # convert this to dictionary
|
144 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
145 |
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|
|
|
20 |
finally:
|
21 |
torch.set_float32_matmul_precision("highest")
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
pipe = FluxFillPipeline.from_pretrained(
|
25 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
|
|
134 |
|
135 |
|
136 |
def mask_generation(image=None, d=None):
|
137 |
+
# use bfloat16 for the entire notebook
|
138 |
+
# torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
|
139 |
+
# # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
140 |
+
# if torch.cuda.get_device_properties(0).major >= 8:
|
141 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
142 |
+
# torch.backends.cudnn.allow_tf32 = True
|
143 |
d = eval(d) # convert this to dictionary
|
144 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
145 |
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|